Exploring syntactical features for anomaly detection in application logs

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2022-03-23 DOI:10.1515/itit-2021-0064
R. Copstein, Egil Karlsen, Jeff Schwartzentruber, N. Zincir-Heywood, M. Heywood
{"title":"Exploring syntactical features for anomaly detection in application logs","authors":"R. Copstein, Egil Karlsen, Jeff Schwartzentruber, N. Zincir-Heywood, M. Heywood","doi":"10.1515/itit-2021-0064","DOIUrl":null,"url":null,"abstract":"Abstract In this research, we analyze the effect of lightweight syntactical feature extraction techniques from the field of information retrieval for log abstraction in information security. To this end, we evaluate three feature extraction techniques and three clustering algorithms on four different security datasets for anomaly detection. Results demonstrate that these techniques have a role to play for log abstraction in the form of extracting syntactic features which improves the identification of anomalous minority classes, specifically in homogeneous security datasets.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2021-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this research, we analyze the effect of lightweight syntactical feature extraction techniques from the field of information retrieval for log abstraction in information security. To this end, we evaluate three feature extraction techniques and three clustering algorithms on four different security datasets for anomaly detection. Results demonstrate that these techniques have a role to play for log abstraction in the form of extracting syntactic features which improves the identification of anomalous minority classes, specifically in homogeneous security datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索应用程序日志中异常检测的语法特性
摘要在本研究中,我们分析了信息检索领域的轻量级语法特征提取技术在信息安全中对日志抽象的影响。为此,我们在四个不同的安全数据集上评估了用于异常检测的三种特征提取技术和三种聚类算法。结果表明,这些技术以提取句法特征的形式在日志抽象中发挥了作用,这改进了异常少数类的识别,特别是在同质安全数据集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1