Control engineering meets synthetic biology: Foundations and applications

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2021-12-01 DOI:10.1016/j.coisb.2021.100397
Iacopo Ruolo , Sara Napolitano , Davide Salzano , Mario di Bernardo , Diego di Bernardo
{"title":"Control engineering meets synthetic biology: Foundations and applications","authors":"Iacopo Ruolo ,&nbsp;Sara Napolitano ,&nbsp;Davide Salzano ,&nbsp;Mario di Bernardo ,&nbsp;Diego di Bernardo","doi":"10.1016/j.coisb.2021.100397","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic Biology enables the construction of new genetic<span> circuits with the final goal of controlling cellular behaviour. However, the noisy nature of biomolecular interactions renders a fine regulation of such circuits necessary for their correct operation. A possible solution is cybergenetics, a new discipline merging the tools of Synthetic biology with those of control theory. Biomolecular controllers can be classified into three different categories (i) embedded, in which the controller is implemented as a genetic circuit co-existing in the same cell with the process to be controlled; (ii) external, where the controller is implemented as a software in a computer; (iii) multicellular, in which the controller and the process to be controlled are in two different cell populations. Here, we describe the advantages and drawbacks of each one of the approaches, expounding their main advantages, limitations, and applications.</span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"28 ","pages":"Article 100397"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 11

Abstract

Synthetic Biology enables the construction of new genetic circuits with the final goal of controlling cellular behaviour. However, the noisy nature of biomolecular interactions renders a fine regulation of such circuits necessary for their correct operation. A possible solution is cybergenetics, a new discipline merging the tools of Synthetic biology with those of control theory. Biomolecular controllers can be classified into three different categories (i) embedded, in which the controller is implemented as a genetic circuit co-existing in the same cell with the process to be controlled; (ii) external, where the controller is implemented as a software in a computer; (iii) multicellular, in which the controller and the process to be controlled are in two different cell populations. Here, we describe the advantages and drawbacks of each one of the approaches, expounding their main advantages, limitations, and applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制工程与合成生物学:基础与应用
合成生物学能够构建新的遗传回路,最终目标是控制细胞行为。然而,生物分子相互作用的嘈杂性质使得对这种电路的精确调节是其正确运作所必需的。一个可能的解决方案是控制遗传学,这是一门融合了合成生物学和控制论工具的新学科。生物分子控制器可分为三种不同的类别:(i)嵌入式,其中控制器被实现为与待控制过程共存于同一细胞中的遗传电路;(ii)外部,即控制器作为计算机中的软件实现;(iii)多细胞,其中控制器和被控制的过程位于两个不同的细胞群中。在这里,我们描述了每种方法的优点和缺点,阐述了它们的主要优点、局限性和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1