Evaluating Model Fit of Measurement Models in Confirmatory Factor Analysis.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-02-01 Epub Date: 2023-04-02 DOI:10.1177/00131644231163813
David Goretzko, Karik Siemund, Philipp Sterner
{"title":"Evaluating Model Fit of Measurement Models in Confirmatory Factor Analysis.","authors":"David Goretzko, Karik Siemund, Philipp Sterner","doi":"10.1177/00131644231163813","DOIUrl":null,"url":null,"abstract":"<p><p>Confirmatory factor analyses (CFA) are often used in psychological research when developing measurement models for psychological constructs. Evaluating CFA model fit can be quite challenging, as tests for exact model fit may focus on negligible deviances, while fit indices cannot be interpreted absolutely without specifying thresholds or cutoffs. In this study, we review how model fit in CFA is evaluated in psychological research using fit indices and compare the reported values with established cutoff rules. For this, we collected data on all CFA models in <i>Psychological Assessment</i> from the years 2015 to 2020 <math><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>Studies</mi></mrow></msub><mo>=</mo><mn>221</mn><mo>)</mo></mrow></math>. In addition, we reevaluate model fit with newly developed methods that derive fit index cutoffs that are tailored to the respective measurement model and the data characteristics at hand. The results of our review indicate that the model fit in many studies has to be seen critically, especially with regard to the usually imposed independent clusters constraints. In addition, many studies do not fully report all results that are necessary to re-evaluate model fit. We discuss these findings against new developments in model fit evaluation and methods for specification search.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644231163813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Confirmatory factor analyses (CFA) are often used in psychological research when developing measurement models for psychological constructs. Evaluating CFA model fit can be quite challenging, as tests for exact model fit may focus on negligible deviances, while fit indices cannot be interpreted absolutely without specifying thresholds or cutoffs. In this study, we review how model fit in CFA is evaluated in psychological research using fit indices and compare the reported values with established cutoff rules. For this, we collected data on all CFA models in Psychological Assessment from the years 2015 to 2020 (NStudies=221). In addition, we reevaluate model fit with newly developed methods that derive fit index cutoffs that are tailored to the respective measurement model and the data characteristics at hand. The results of our review indicate that the model fit in many studies has to be seen critically, especially with regard to the usually imposed independent clusters constraints. In addition, many studies do not fully report all results that are necessary to re-evaluate model fit. We discuss these findings against new developments in model fit evaluation and methods for specification search.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
验证因子分析中度量模型的模型拟合度评价
在心理学研究中,当开发心理结构的测量模型时,经常使用证实性因素分析(CFA)。尽管评估CFA模型拟合可能非常具有挑战性,因为精确模型拟合的测试可能集中在可忽略的偏差上,而在没有指定阈值或截止值的情况下,拟合指数不能完全解释。在这项研究中,我们回顾了在心理学研究中如何使用拟合指数来评估CFA中的模型拟合,并将报告的值与既定的截断规则进行比较。为此,我们收集了2015年至2020年心理评估中所有CFA模型的数据[公式:见正文]。此外,我们使用新开发的方法重新评估模型拟合,这些方法导出了适合各自测量模型和手头数据特征的拟合指数截止值。我们的综述结果表明,必须严格看待模型在许多研究中的适用性,特别是在通常施加的独立集群约束方面。此外,许多研究并没有完全报告重新评估模型拟合所需的所有结果。我们针对模型拟合评估和规范搜索方法的新发展讨论了这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1