scSDSC: Self-supervised Deep Subspace Clustering for scRNA-seq Data

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-08-16 DOI:10.2174/1574893618666230816090443
Jian-ping Zhao, Bo Yang, Hai-yun Wang, Chunhan Zheng
{"title":"scSDSC: Self-supervised Deep Subspace Clustering for scRNA-seq Data","authors":"Jian-ping Zhao, Bo Yang, Hai-yun Wang, Chunhan Zheng","doi":"10.2174/1574893618666230816090443","DOIUrl":null,"url":null,"abstract":"\n\nSingle-cell RNA sequencing(scRNA-seq) data can identify heterogeneity between cells, thereby identifying cell types and discovering rare cell types. Clustering is often used to identify cell types, but the high noise and high dimension of scRNA-seq lead to the degradation of clustering performance and impact downstream analysis. Deep learning is widely used in this field, which provides promising performance in feature learning.\n\n\n\nMost deep learning models only consider the relationship between genes, ignore the relationship between cells. We try to use the relationships between cells and the relationships between genes to construct clustering models.\n\n\n\nWe proposed scSDSC: a deep subspace cluster architecture that considers the relationships between genes and cells at the same time. Similar to deep subspace clustering (DSC), we added a fully connected layer after the embedding layer to obtain the self-expression matrix. In addition, we also added a fully connected SoftMax layer to generate the pseudo-label and used the information carried by the pseudo-label for model training. Finally, the affinity matrix is obtained for spectral clustering.\n\n\n\nExperimental results on eight real datasets show that scSDSC outperforms existing methods in downstream analysis.\n\n\n\nOur method plays an important role in improving clustering accuracy and downstream analysis.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1574893618666230816090443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing(scRNA-seq) data can identify heterogeneity between cells, thereby identifying cell types and discovering rare cell types. Clustering is often used to identify cell types, but the high noise and high dimension of scRNA-seq lead to the degradation of clustering performance and impact downstream analysis. Deep learning is widely used in this field, which provides promising performance in feature learning. Most deep learning models only consider the relationship between genes, ignore the relationship between cells. We try to use the relationships between cells and the relationships between genes to construct clustering models. We proposed scSDSC: a deep subspace cluster architecture that considers the relationships between genes and cells at the same time. Similar to deep subspace clustering (DSC), we added a fully connected layer after the embedding layer to obtain the self-expression matrix. In addition, we also added a fully connected SoftMax layer to generate the pseudo-label and used the information carried by the pseudo-label for model training. Finally, the affinity matrix is obtained for spectral clustering. Experimental results on eight real datasets show that scSDSC outperforms existing methods in downstream analysis. Our method plays an important role in improving clustering accuracy and downstream analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scSDSC:scRNA-seq数据的自监督深子空间聚类
单细胞RNA测序(scRNA-seq)数据可以识别细胞间的异质性,从而鉴定细胞类型,发现罕见的细胞类型。聚类通常用于识别细胞类型,但scRNA-seq的高噪声和高维数导致聚类性能下降,影响下游分析。深度学习在这一领域得到了广泛的应用,在特征学习方面有很好的表现。大多数深度学习模型只考虑基因之间的关系,忽略了细胞之间的关系。我们尝试使用细胞之间的关系和基因之间的关系来构建聚类模型。我们提出了一种同时考虑基因和细胞之间关系的深层子空间簇结构——scSDSC。与深子空间聚类(deep subspace clustering, DSC)类似,我们在嵌入层之后增加一个完全连接层来获得自表达矩阵。此外,我们还增加了一个全连接的SoftMax层来生成伪标签,并利用伪标签携带的信息进行模型训练。最后,得到用于谱聚类的亲和矩阵。在8个真实数据集上的实验结果表明,scSDSC在下游分析方面优于现有方法。该方法在提高聚类精度和下游分析方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1