Lab-scale siRNA and mRNA LNP manufacturing by various microfluidic mixing techniques – an evaluation of particle properties and efficiency

Q2 Pharmacology, Toxicology and Pharmaceutics OpenNano Pub Date : 2023-07-01 DOI:10.1016/j.onano.2023.100161
David C. Jürgens , Leonie Deßloch , Diana Porras-Gonzalez , Joshua Winkeljann , Sebastian Zielinski , Matthias Munschauer , Andreas L. Hörner , Gerald Burgstaller , Benjamin Winkeljann , Olivia M. Merkel
{"title":"Lab-scale siRNA and mRNA LNP manufacturing by various microfluidic mixing techniques – an evaluation of particle properties and efficiency","authors":"David C. Jürgens ,&nbsp;Leonie Deßloch ,&nbsp;Diana Porras-Gonzalez ,&nbsp;Joshua Winkeljann ,&nbsp;Sebastian Zielinski ,&nbsp;Matthias Munschauer ,&nbsp;Andreas L. Hörner ,&nbsp;Gerald Burgstaller ,&nbsp;Benjamin Winkeljann ,&nbsp;Olivia M. Merkel","doi":"10.1016/j.onano.2023.100161","DOIUrl":null,"url":null,"abstract":"<div><p>Lipid Nanoparticles (LNPs) are promising drug delivery systems for various RNAs such as small interfering (siRNA) and messenger RNA (mRNA). Microfluidic mixing is a common technique to encapsulate RNA in LNPs. However, high flow rates and lipid concentrations are used for LNP formation to control LNP size as well as RNA encapsulation efficiency. We investigated the feasibility of downscaling siRNA and mRNA LNP manufacturing to save materials and enable a broader access to this technology. To optimize such a down-scaled procedure, we evaluated physicochemical nanoparticle characteristics including hydrodynamic diameter, zeta potential, particle concentration, encapsulation efficiency, and recovery for LNPs produced with three different microfluidic methods. We observed differences in nanoparticle characteristics and <em>in vitro</em> performance regarding cellular uptake, gene silencing, and mRNA expression. We determined the gene knockdown ability of the best siRNA LNPs formulation <em>ex vivo</em> using precision-cut lung slices to highlight the translational character of LNPs for inhalation and observed comparable efficacy as with a commercially available transfection reagent.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"12 ","pages":"Article 100161"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

Abstract

Lipid Nanoparticles (LNPs) are promising drug delivery systems for various RNAs such as small interfering (siRNA) and messenger RNA (mRNA). Microfluidic mixing is a common technique to encapsulate RNA in LNPs. However, high flow rates and lipid concentrations are used for LNP formation to control LNP size as well as RNA encapsulation efficiency. We investigated the feasibility of downscaling siRNA and mRNA LNP manufacturing to save materials and enable a broader access to this technology. To optimize such a down-scaled procedure, we evaluated physicochemical nanoparticle characteristics including hydrodynamic diameter, zeta potential, particle concentration, encapsulation efficiency, and recovery for LNPs produced with three different microfluidic methods. We observed differences in nanoparticle characteristics and in vitro performance regarding cellular uptake, gene silencing, and mRNA expression. We determined the gene knockdown ability of the best siRNA LNPs formulation ex vivo using precision-cut lung slices to highlight the translational character of LNPs for inhalation and observed comparable efficacy as with a commercially available transfection reagent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过各种微流体混合技术制造实验室规模的siRNA和mRNA LNP——颗粒特性和效率的评估
脂质纳米颗粒(LNPs)是一种很有前途的药物递送系统,可用于各种RNA,如小干扰RNA (siRNA)和信使RNA (mRNA)。微流控混合是一种常用的RNA包封技术。然而,高流速和高脂质浓度用于LNP的形成,以控制LNP的大小和RNA的包封效率。我们研究了缩小siRNA和mRNA LNP制造规模的可行性,以节省材料,并使这项技术得到更广泛的应用。为了优化这种缩小规模的过程,我们评估了用三种不同的微流体方法生产的LNPs的物理化学纳米颗粒特性,包括流体动力学直径、zeta电位、颗粒浓度、包封效率和回收率。我们观察到纳米颗粒特性和细胞摄取、基因沉默和mRNA表达方面的体外性能的差异。我们使用精确切割的肺切片确定了最佳siRNA LNPs制剂的体外基因敲除能力,以突出LNPs吸入的翻译特性,并观察到与市售转染试剂相当的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
期刊最新文献
Fundamentals behind the success of nanotechnology in cancer treatment and diagnosis Cellular viability in an in vitro model of human ventricular cardiomyocytes (RL-14) exposed to gold nanoparticles biosynthesized using silk fibroin from silk fibrous waste Fabrication of pyrroloquinoline quinone-loaded small unilamellar vesicles through various downsizing techniques for biomedical applications A recent advances in antimicrobial activity of green synthesized selenium nanoparticle The effect of coating chitosan from cuttlefish bone (Sepia Sp.) on the surface of orthodontic mini-screw
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1