{"title":"The Traveling Salesman Problem with Stochastic and Correlated Customers","authors":"Pascal L. J. Wissink","doi":"10.1287/trsc.2022.0005","DOIUrl":null,"url":null,"abstract":"It is well-known that the cost of parcel delivery can be reduced by designing routes that take into account the uncertainty surrounding customers’ presences. Thus far, routing problems with stochastic customer presences have relied on the assumption that all customer presences are independent from each other. However, the notion that demographic factors retain predictive power for parcel-delivery efficiency suggests that shared characteristics can be exploited to map dependencies between customer presences. This paper introduces the correlated probabilistic traveling salesman problem (CPTSP). The CPTSP generalizes the traveling salesman problem with stochastic customer presences, also known as the probabilistic traveling salesman problem (PTSP), to account for potential correlations between customer presences. I propose a generic and flexible model formulation for the CPTSP using copulas that maintains computational and mathematical tractability in high-dimensional settings. I also present several adaptations of existing exact and heuristic frameworks to solve the CPTSP effectively. Computational experiments on real-world parcel-delivery data reveal that correlations between stochastic customer presences do not always affect route decisions, but could have a considerable impact on route cost estimates. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0005 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0005","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-known that the cost of parcel delivery can be reduced by designing routes that take into account the uncertainty surrounding customers’ presences. Thus far, routing problems with stochastic customer presences have relied on the assumption that all customer presences are independent from each other. However, the notion that demographic factors retain predictive power for parcel-delivery efficiency suggests that shared characteristics can be exploited to map dependencies between customer presences. This paper introduces the correlated probabilistic traveling salesman problem (CPTSP). The CPTSP generalizes the traveling salesman problem with stochastic customer presences, also known as the probabilistic traveling salesman problem (PTSP), to account for potential correlations between customer presences. I propose a generic and flexible model formulation for the CPTSP using copulas that maintains computational and mathematical tractability in high-dimensional settings. I also present several adaptations of existing exact and heuristic frameworks to solve the CPTSP effectively. Computational experiments on real-world parcel-delivery data reveal that correlations between stochastic customer presences do not always affect route decisions, but could have a considerable impact on route cost estimates. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0005 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.