Treatment Palm Oil Mill Effluent (POME) Using Continuous Column Plate Electric Reactor

Reno Susanto, Viona Aulia Rahmi, Dwi Widyaningsih
{"title":"Treatment Palm Oil Mill Effluent (POME) Using Continuous Column Plate Electric Reactor","authors":"Reno Susanto, Viona Aulia Rahmi, Dwi Widyaningsih","doi":"10.24252/al-kimia.v10i2.25646","DOIUrl":null,"url":null,"abstract":"Palm oil mills produce palm oil mill effluent (POME) which contains various dissolved organic compounds in the form of short fibers, hemicellulose, and their derivatives, protein, free fatty acids, a mixture of minerals and organic pigments such as anthocyanins, carotene, polyphenols, lignin and tannins. Organic compounds in this waste will cause problems such as increasing the value of TSS, TDS, and COD which can be a crucial environment for processing liquid waste in palm oil mills. One possible method to reduce the content of TSS, TDS, and COD is the electrocoagulation method. This study aims to determine the effect of variable flowrate, voltage, and distance between plates in the electrocoagulation process with a plate column electric reactor, and determine the optimum conditions for flowrate, voltage, and distance between plates. Optimum conditions are obtained at fflowrate3 L/min, 28 V voltage, 2 cm distance between plates with percent removal of TSS, TDS, and COD, respectively 49.30%; 49.40%; 60.30%.","PeriodicalId":7535,"journal":{"name":"Al-Kimia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Kimia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24252/al-kimia.v10i2.25646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Palm oil mills produce palm oil mill effluent (POME) which contains various dissolved organic compounds in the form of short fibers, hemicellulose, and their derivatives, protein, free fatty acids, a mixture of minerals and organic pigments such as anthocyanins, carotene, polyphenols, lignin and tannins. Organic compounds in this waste will cause problems such as increasing the value of TSS, TDS, and COD which can be a crucial environment for processing liquid waste in palm oil mills. One possible method to reduce the content of TSS, TDS, and COD is the electrocoagulation method. This study aims to determine the effect of variable flowrate, voltage, and distance between plates in the electrocoagulation process with a plate column electric reactor, and determine the optimum conditions for flowrate, voltage, and distance between plates. Optimum conditions are obtained at fflowrate3 L/min, 28 V voltage, 2 cm distance between plates with percent removal of TSS, TDS, and COD, respectively 49.30%; 49.40%; 60.30%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用连续柱板式电反应器处理棕榈油厂废水
棕榈油厂生产的棕榈油厂废水(POME)含有各种溶解的有机化合物,形式为短纤维、半纤维素及其衍生物、蛋白质、游离脂肪酸、矿物质和有机色素(如花青素、胡萝卜素、多酚、木质素和单宁)的混合物。这种废物中的有机化合物会引起诸如增加TSS, TDS和COD值等问题,这可能是棕榈油工厂处理液体废物的关键环境。降低TSS、TDS和COD含量的一种可能方法是电絮凝法。本研究旨在确定变流量、变电压、变板间距离对板柱式电凝反应器电凝过程的影响,确定变流量、变电压、变板间距离的最佳条件。最佳工艺条件为流量3 L/min,电压28 V,板间距2 cm, TSS、TDS、COD去除率分别为49.30%;49.40%;60.30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
期刊最新文献
Analysis of Total Phenol Levels in Moringa Extract (Moringa Oliefera Lamk.) in Vegetable Oil Uric acid The Influence of Ethanol Extract of Sambiloto Leaves and Sambung Nyawa Leaves To Decrease Concentration of Uric Acid Stigmasterol (Steroid) From Leaves of Solanum ferox L (Sour Eggplant) Plant Antibacterial Activity Test of Secang Wood (Caesalpinia sappan L.) Ethanol Extract Against Streptococcus mutans Active Compounds in Broadleaf Mahogany (Swietenia macrophylla) Seeds as Antiaging Agent Based on Molecular Docking Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1