Bias-Corrected Maximum Likelihood Estimation and Bayesian Inference for the Process Performance Index Using Inverse Gaussian Distribution

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Stats Pub Date : 2022-11-05 DOI:10.3390/stats5040064
Tzong-Ru Tsai, Hua Xin, Yanqin Fan, Y. Lio
{"title":"Bias-Corrected Maximum Likelihood Estimation and Bayesian Inference for the Process Performance Index Using Inverse Gaussian Distribution","authors":"Tzong-Ru Tsai, Hua Xin, Yanqin Fan, Y. Lio","doi":"10.3390/stats5040064","DOIUrl":null,"url":null,"abstract":"In this study, the estimation methods of bias-corrected maximum likelihood (BCML), bootstrap BCML (B-BCML) and Bayesian using Jeffrey’s prior distribution were proposed for the inverse Gaussian distribution with small sample cases to obtain the ML and Bayes estimators of the model parameters and the process performance index based on the lower specification process performance index. Moreover, an approximate confidence interval and the highest posterior density interval of the process performance index were established via the delta and Bayesian inference methods, respectively. To overcome the computational difficulty of sampling from the posterior distribution in Bayesian inference, the Markov chain Monte Carlo approach was used to implement the proposed Bayesian inference procedures. Monte Carlo simulations were conducted to evaluate the performance of the proposed BCML, B-BCML and Bayesian estimation methods. An example of the active repair times for an airborne communication transceiver is used for illustration.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the estimation methods of bias-corrected maximum likelihood (BCML), bootstrap BCML (B-BCML) and Bayesian using Jeffrey’s prior distribution were proposed for the inverse Gaussian distribution with small sample cases to obtain the ML and Bayes estimators of the model parameters and the process performance index based on the lower specification process performance index. Moreover, an approximate confidence interval and the highest posterior density interval of the process performance index were established via the delta and Bayesian inference methods, respectively. To overcome the computational difficulty of sampling from the posterior distribution in Bayesian inference, the Markov chain Monte Carlo approach was used to implement the proposed Bayesian inference procedures. Monte Carlo simulations were conducted to evaluate the performance of the proposed BCML, B-BCML and Bayesian estimation methods. An example of the active repair times for an airborne communication transceiver is used for illustration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于逆高斯分布的过程性能指标的偏差校正最大似然估计和贝叶斯推断
本文针对小样本情况下的反高斯分布,提出了偏差校正最大似然(BCML)、自举BCML (B-BCML)和基于Jeffrey先验分布的贝叶斯估计方法,得到了基于低规格过程性能指标的模型参数和过程性能指标的ML和Bayes估计量。此外,通过delta和Bayesian推理方法分别建立了过程性能指标的近似置信区间和最高后验密度区间。为了克服贝叶斯推理中从后验分布中抽样的计算困难,采用马尔可夫链蒙特卡罗方法实现了所提出的贝叶斯推理过程。通过蒙特卡罗仿真来评价所提出的BCML、B-BCML和贝叶斯估计方法的性能。本文以机载通信收发器的主动维修时间为例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Precise Tensor Product Smoothing via Spectral Splines Predicting Random Walks and a Data-Splitting Prediction Region The Mediating Impact of Innovation Types in the Relationship between Innovation Use Theory and Market Performance Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices Revisiting the Large n (Sample Size) Problem: How to Avert Spurious Significance Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1