Dimensional control over metal halide perovskite crystallization guided by active learning

Zhi Li, Philip W. Nega, M. Najeeb, Chaochao Dun, M. Zeller, J. Urban, W. Saidi, Joshua Schrier, A. Norquist, E. Chan
{"title":"Dimensional control over metal halide perovskite crystallization guided by active learning","authors":"Zhi Li, Philip W. Nega, M. Najeeb, Chaochao Dun, M. Zeller, J. Urban, W. Saidi, Joshua Schrier, A. Norquist, E. Chan","doi":"10.33774/chemrxiv-2021-w2c7b","DOIUrl":null,"url":null,"abstract":"Metal halide perovskite (MHP) derivatives, a promising class of optoelectronic materials, have been synthesized with a range of dimensionalities that govern their optoelectronic properties and determine their applications. We demonstrate a data-driven approach combining active learning and high-throughput experimentation to discover, control, and understand the formation of phases with different dimensionalities in the morpholinium (morph) lead iodide system. Using a robot-assisted workflow, we synthesized and characterized two novel MHP derivatives that have distinct optical properties: a one-dimensional (1D) morphPbI3 phase ([C4H10NO][PbI3]) and a 2D (morph)2PbI4 phase ([C4H10NO]2[PbI4]). To efficiently acquire the data needed to construct a machine learning (ML) model of the reaction conditions where the 1D and 2D phases are formed, data acquisition was guided by a diverse-mini-batch-sampling active learning algorithm, using prediction confidence as a stopping criterion. Querying the ML model uncovered the reaction parameters that have the most significant effects on dimensionality control. Based on these insights, we propose a reaction scheme that rationalizes the formation of different dimensional MHP derivatives in the morph-Pb-I system. The data-driven approach presented here, including the use of additives to manipulate dimensionality, will be valuable for controlling the crystallization of a range of materials over large reaction-composition spaces.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-w2c7b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Metal halide perovskite (MHP) derivatives, a promising class of optoelectronic materials, have been synthesized with a range of dimensionalities that govern their optoelectronic properties and determine their applications. We demonstrate a data-driven approach combining active learning and high-throughput experimentation to discover, control, and understand the formation of phases with different dimensionalities in the morpholinium (morph) lead iodide system. Using a robot-assisted workflow, we synthesized and characterized two novel MHP derivatives that have distinct optical properties: a one-dimensional (1D) morphPbI3 phase ([C4H10NO][PbI3]) and a 2D (morph)2PbI4 phase ([C4H10NO]2[PbI4]). To efficiently acquire the data needed to construct a machine learning (ML) model of the reaction conditions where the 1D and 2D phases are formed, data acquisition was guided by a diverse-mini-batch-sampling active learning algorithm, using prediction confidence as a stopping criterion. Querying the ML model uncovered the reaction parameters that have the most significant effects on dimensionality control. Based on these insights, we propose a reaction scheme that rationalizes the formation of different dimensional MHP derivatives in the morph-Pb-I system. The data-driven approach presented here, including the use of additives to manipulate dimensionality, will be valuable for controlling the crystallization of a range of materials over large reaction-composition spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动学习引导下金属卤化物钙钛矿结晶的尺寸控制
金属卤化物钙钛矿(MHP)衍生物是一类很有前途的光电材料,已经合成了一系列的尺寸,这些尺寸决定了它们的光电性能并决定了它们的应用。我们展示了一种数据驱动的方法,结合主动学习和高通量实验来发现、控制和理解形态化(morph)碘化铅体系中不同维度相的形成。利用机器人辅助工作流程,我们合成并表征了两种具有不同光学性质的新型MHP衍生物:一维(1D) morphPbI3相([C4H10NO][PbI3])和二维(morph)2PbI4相([C4H10NO]2[PbI4])。为了有效地获取构建1D和2D相形成的反应条件的机器学习(ML)模型所需的数据,数据采集由多元小批量采样主动学习算法指导,以预测置信度作为停止准则。查询ML模型揭示了对维数控制有最显著影响的反应参数。基于这些见解,我们提出了一个反应方案,使morphi - pb - i体系中不同维度MHP衍生物的形成合理化。这里提出的数据驱动的方法,包括使用添加剂来操纵维度,对于在大的反应组成空间中控制一系列材料的结晶将是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chemodivergent Organolanthanide Catalyzed C-H a-Mono-1 Borylation of Azines Thermal aging of heteroatom substituted Keggin type aluminum oxo polycation solutions: Aggregation behavior and impacts on dissolved organic carbon and turbidity removal Bioorthogonal Photo-Catalytic Activation of an Anti-Cancer Prodrug by Riboflavin Energetic basis of excited-state enzyme design and function Electrochemical Ozone Generation Using Compacted High Pressure High Temperature Boron Doped Diamond Microparticle Electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1