{"title":"Photosynthetic Responses of Greenhouse Ornamentals to Interaction of Irradiance, Carbon Dioxide Concentration, and Temperature","authors":"Ian K. Atkins, J. Boldt","doi":"10.21273/jashs05115-21","DOIUrl":null,"url":null,"abstract":"Supplemental lighting, temperature control, and CO2 enrichment can improve the productivity of greenhouse crops, but operating costs for greenhouse control systems to maintain environmental parameters at desired setpoints can be expensive. To balance operating costs with productivity, growers need to be able to predict how a crop will perform as a function of photosynthetic photon flux density (PPFD), CO2 concentration, and temperature. The objective of this study was to explore the response of net photosynthetic rate (Pn) to PPFD and CO2 concentration, for plants acclimated to different growth environment temperatures or light intensities. We measured Pn at all combinations of 14 irradiances and four CO2 concentrations of calibrachoa (Calibrachoa ×hybrida ‘Superbells Lemon Slice’), petunia (Petunia ×hybrida ‘Supertunia Mini Strawberry Pink Veined’), and verbena (Verbena ×hybrida ‘Superbena Royale Whitecap’) grown at three light intensities, and of geranium (Pelargonium ×hortorum ‘Maverick Red’), pepper (Capsicum annuum ‘California Wonder’), and sunflower (Helianthus annuus ‘Pacino Gold’) grown at three different temperatures. Sunflower, pepper, and geranium were fit to a model representing Pn as a function of PPFD, CO2 concentration, and leaf temperature. Photosynthetic light response curves, at each CO2 concentration, were fit for each species and growth environment using a nonrectangular hyperbola. These models can be used to identify multiple combinations of PPFD, CO2 concentration, and leaf temperature that would result in equivalent rates of photosynthesis, allowing the most cost-effective combination to be chosen.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05115-21","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Supplemental lighting, temperature control, and CO2 enrichment can improve the productivity of greenhouse crops, but operating costs for greenhouse control systems to maintain environmental parameters at desired setpoints can be expensive. To balance operating costs with productivity, growers need to be able to predict how a crop will perform as a function of photosynthetic photon flux density (PPFD), CO2 concentration, and temperature. The objective of this study was to explore the response of net photosynthetic rate (Pn) to PPFD and CO2 concentration, for plants acclimated to different growth environment temperatures or light intensities. We measured Pn at all combinations of 14 irradiances and four CO2 concentrations of calibrachoa (Calibrachoa ×hybrida ‘Superbells Lemon Slice’), petunia (Petunia ×hybrida ‘Supertunia Mini Strawberry Pink Veined’), and verbena (Verbena ×hybrida ‘Superbena Royale Whitecap’) grown at three light intensities, and of geranium (Pelargonium ×hortorum ‘Maverick Red’), pepper (Capsicum annuum ‘California Wonder’), and sunflower (Helianthus annuus ‘Pacino Gold’) grown at three different temperatures. Sunflower, pepper, and geranium were fit to a model representing Pn as a function of PPFD, CO2 concentration, and leaf temperature. Photosynthetic light response curves, at each CO2 concentration, were fit for each species and growth environment using a nonrectangular hyperbola. These models can be used to identify multiple combinations of PPFD, CO2 concentration, and leaf temperature that would result in equivalent rates of photosynthesis, allowing the most cost-effective combination to be chosen.
期刊介绍:
The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers.
The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as:
- Biotechnology
- Developmental Physiology
- Environmental Stress Physiology
- Genetics and Breeding
- Photosynthesis, Sources-Sink Physiology
- Postharvest Biology
- Seed Physiology
- Postharvest Biology
- Seed Physiology
- Soil-Plant-Water Relationships
- Statistics