Steam turbine controllers design based on soft-computing techniques

Nasir Ahmed Alawaad
{"title":"Steam turbine controllers design based on soft-computing techniques","authors":"Nasir Ahmed Alawaad","doi":"10.11591/IJRA.V9I4.PP281-291","DOIUrl":null,"url":null,"abstract":"Steam turbine is viewed as a standout among hotspots for control age in the most recent decades, its elements examination end up being dynamically more basic. For this investigation, the model chose is of turbine speed control framework. The purpose behind this is that model is regularly experienced in refineries in a type of steam turbine that utilization hydraulic governor to control the speed of the turbine. To suit plan prerequisites, a mathematical model for the turbine was determined in light of transfer function and state space definition. There are two sorts of controllers for steam turbines which are traditional and modern controllers. Internal mode control with proportional integral derivative (IMC-PID) and linear quadratic controller (LQR) are classical type. Fuzzy logic controller (FLC) and intelligent optimization techniques like, ant colony algorithm (ACOA) and genetic algorithm (GA) are modern type. The proposed work centers on classical verses modern controllers. Results got demonstrate that embracing such a controller (GA) improves the design requirements and transient stability. The system control was actualized in simulation utilizing MATLAB/Simulink.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJRA.V9I4.PP281-291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Steam turbine is viewed as a standout among hotspots for control age in the most recent decades, its elements examination end up being dynamically more basic. For this investigation, the model chose is of turbine speed control framework. The purpose behind this is that model is regularly experienced in refineries in a type of steam turbine that utilization hydraulic governor to control the speed of the turbine. To suit plan prerequisites, a mathematical model for the turbine was determined in light of transfer function and state space definition. There are two sorts of controllers for steam turbines which are traditional and modern controllers. Internal mode control with proportional integral derivative (IMC-PID) and linear quadratic controller (LQR) are classical type. Fuzzy logic controller (FLC) and intelligent optimization techniques like, ant colony algorithm (ACOA) and genetic algorithm (GA) are modern type. The proposed work centers on classical verses modern controllers. Results got demonstrate that embracing such a controller (GA) improves the design requirements and transient stability. The system control was actualized in simulation utilizing MATLAB/Simulink.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于软计算技术的汽轮机控制器设计
在最近几十年中,汽轮机被视为控制时代的热点之一,其元件检查最终变得更加基本。在本研究中,所选择的模型是涡轮机速度控制框架。这背后的目的是,炼油厂经常使用一种利用液压调速器控制汽轮机速度的汽轮机模型。为了满足计划的前提条件,根据传递函数和状态空间的定义,确定了涡轮机的数学模型。汽轮机的控制器有两种,即传统控制器和现代控制器。比例积分微分内模控制(IMC-PID)和线性二次型控制器(LQR)是经典型。模糊逻辑控制器(FLC)和智能优化技术如蚁群算法(ACOA)和遗传算法(GA)是现代型的。拟议的工作以古典控制器和现代控制器为中心。结果表明,采用这种控制器可以提高设计要求和暂态稳定性。利用MATLAB/Simulink对系统进行了仿真控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Towards a Unified Approach for Continuously-Variable Impedance Control of Powered Prosthetic Legs over Walking Speeds and Inclines. Cooperative vs. Teleoperation Control of the Steady Hand Eye Robot with Adaptive Sclera Force Control: A Comparative Study. Bevel-Tip Needle Deflection Modeling, Simulation, and Validation in Multi-Layer Tissues. Exploring the Needle Tip Interaction Force with Retinal Tissue Deformation in Vitreoretinal Surgery. Fully Distributed Shape Sensing of a Flexible Surgical Needle Using Optical Frequency Domain Reflectometry for Prostate Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1