Performance Evaluation of Classification Algorithms to Detect Bee Swarming Events Using Sound

Signals Pub Date : 2022-11-03 DOI:10.3390/signals3040048
Kiromitis I. Dimitrios, Christos V. Bellos, K. Stefanou, G. Stergios, Ioannis O. Andrikos, Thomas Katsantas, Sotirios Kontogiannis
{"title":"Performance Evaluation of Classification Algorithms to Detect Bee Swarming Events Using Sound","authors":"Kiromitis I. Dimitrios, Christos V. Bellos, K. Stefanou, G. Stergios, Ioannis O. Andrikos, Thomas Katsantas, Sotirios Kontogiannis","doi":"10.3390/signals3040048","DOIUrl":null,"url":null,"abstract":"This paper presents a machine-learning approach for detecting swarming events. Three different classification algorithms are tested: The k-Nearest Neighbors algorithm (k-NN) and Support Vector Machine (SVM), and a newly proposed by the authors, U-Net Convolutional Neural Network (CNN), developed for biomedical image segmentation. Next, the authors present their experimental scenario of collecting audio data of swarming and non-swarming events and evaluating the results from the k-NN and SVM classifiers and their proposed CNN algorithm. Finally, the authors compare these three methods and present the cross-comparison results of the optimal method for early and late/close-to-the-event detection of swarming.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals3040048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a machine-learning approach for detecting swarming events. Three different classification algorithms are tested: The k-Nearest Neighbors algorithm (k-NN) and Support Vector Machine (SVM), and a newly proposed by the authors, U-Net Convolutional Neural Network (CNN), developed for biomedical image segmentation. Next, the authors present their experimental scenario of collecting audio data of swarming and non-swarming events and evaluating the results from the k-NN and SVM classifiers and their proposed CNN algorithm. Finally, the authors compare these three methods and present the cross-comparison results of the optimal method for early and late/close-to-the-event detection of swarming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用声音检测蜂群事件的分类算法性能评价
本文提出了一种用于检测群集事件的机器学习方法。测试了三种不同的分类算法:k-近邻算法(k-NN)和支持向量机(SVM),以及作者最新提出的用于生物医学图像分割的U-Net卷积神经网络(CNN)。接下来,作者介绍了他们的实验场景,即收集群集和非群集事件的音频数据,并评估k-NN和SVM分类器以及他们提出的CNN算法的结果。最后,作者对这三种方法进行了比较,并给出了集群早期和晚期/接近事件检测的最优方法的交叉比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1