Nowcasting Multi-Parameter Phased-Array Weather Radar (MP-PAWR) echoes of localized heavy precipitation using a 3D Recurrent Neural Network trained with an adversarial technique
P. Baron, Kohei Kawashima, Dong-Kyun Kim, H. Hanado, S. Kawamura, T. Maesaka, K. Nakagawa, S. Satoh, T. Ushio
{"title":"Nowcasting Multi-Parameter Phased-Array Weather Radar (MP-PAWR) echoes of localized heavy precipitation using a 3D Recurrent Neural Network trained with an adversarial technique","authors":"P. Baron, Kohei Kawashima, Dong-Kyun Kim, H. Hanado, S. Kawamura, T. Maesaka, K. Nakagawa, S. Satoh, T. Ushio","doi":"10.1175/jtech-d-22-0109.1","DOIUrl":null,"url":null,"abstract":"\nWe present nowcasts of sudden heavy rains on meso-γ-scales (2–20 km) using the high spatio-temporal resolution of a Multi-Parameter Phased-Array Weather Radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-minute lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on Long Short-Term Memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 sec. The model uses radar reflectivity at horizontal polarization (ZH) and the differential reflectivity. The input parameters are defined in a volume of 64×64×8 km3 with the lowest level at 1.9 km and a resolution of 0.4×0.4×0.25 km3. The prediction is a 10-minute sequence of ZH at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0109.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
We present nowcasts of sudden heavy rains on meso-γ-scales (2–20 km) using the high spatio-temporal resolution of a Multi-Parameter Phased-Array Weather Radar (MP-PAWR) sensitive to rain droplets. The onset of typical storms is successfully predicted with 10-minute lead time, i.e., the current predictability limit of rainfall caused by individual convective cores. A supervised recurrent neural network based on Long Short-Term Memory with 3D spatial convolutions (RN3D) is used to account for the horizontal and vertical changes of the convective cells with a time resolution of 30 sec. The model uses radar reflectivity at horizontal polarization (ZH) and the differential reflectivity. The input parameters are defined in a volume of 64×64×8 km3 with the lowest level at 1.9 km and a resolution of 0.4×0.4×0.25 km3. The prediction is a 10-minute sequence of ZH at the lowest grid level. The model is trained with a large number of observations of summer 2020 and an adversarial technique. RN3D is tested with different types of rapidly evolving localized heavy rainfalls of summers 2018 and 2019. The model performance is compared to that of an advection model for 3D extrapolation of PAWR echoes (A3DM). RN3D better predicts the formation and dissipation of precipitation. However, RN3D tends to underestimate heavy rainfall especially when the storm is well developed. In this phase of the storm, A3DM nowcast scores are found slightly higher. The high skill of RN3D to predict the onset of sudden localized rainfall is illustrated with an example for which RN3D outperforms the operational precipitation nowcasting system of Japan Meteorological Agency (JMA).
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.