{"title":"CuSP","authors":"Loc Hoang, Roshan Dathathri, G. Gill, K. Pingali","doi":"10.1145/3469379.3469385","DOIUrl":null,"url":null,"abstract":"Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems use a built-in partitioner that incorporates a particular partitioning policy, but the best policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a few policies. CuSP is a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and quickly generates highquality graph partitions. For example, it can partition wdc12, the largest publicly available web-crawl graph with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-theart stand-alone partitioner in the literature while supporting a wider range of partitioning policies.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"55 1","pages":"47 - 60"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3469379.3469385","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469379.3469385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems use a built-in partitioner that incorporates a particular partitioning policy, but the best policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a few policies. CuSP is a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and quickly generates highquality graph partitions. For example, it can partition wdc12, the largest publicly available web-crawl graph with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-theart stand-alone partitioner in the literature while supporting a wider range of partitioning policies.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.