I. Calciu, M. Imran, Ivan Puddu, Sanidhya Kashyap, H. Maruf, O. Mutlu, Aasheesh Kolli
{"title":"Using Local Cache Coherence for Disaggregated Memory Systems","authors":"I. Calciu, M. Imran, Ivan Puddu, Sanidhya Kashyap, H. Maruf, O. Mutlu, Aasheesh Kolli","doi":"10.1145/3606557.3606561","DOIUrl":null,"url":null,"abstract":"Disaggregated memory provides many cost savings and resource provisioning benefits for current datacenters, but software systems enabling disaggregated memory access result in high performance penalties. These systems require intrusive code changes to port applications for disaggregated memory or employ slow virtual memory mechanisms to avoid code changes. Such mechanisms result in high overhead page faults to access remote data and high dirty data amplification when tracking changes to cached data at page-granularity. In this paper, we propose a fundamentally new approach for disaggregated memory systems, based on the observation that we can use local cache coherence to track applications' memory accesses transparently, without code changes, at cache-line granularity. This simple idea (1) eliminates page faults from the application critical path when accessing remote data, and (2) decouples the application memory access tracking from the virtual memory page size, enabling cache-line granularity dirty data tracking and eviction. Using this observation, we implemented a new software runtime for disaggregated memory that improves average memory access time and reduces dirty data amplification1.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"57 1","pages":"21 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606557.3606561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Disaggregated memory provides many cost savings and resource provisioning benefits for current datacenters, but software systems enabling disaggregated memory access result in high performance penalties. These systems require intrusive code changes to port applications for disaggregated memory or employ slow virtual memory mechanisms to avoid code changes. Such mechanisms result in high overhead page faults to access remote data and high dirty data amplification when tracking changes to cached data at page-granularity. In this paper, we propose a fundamentally new approach for disaggregated memory systems, based on the observation that we can use local cache coherence to track applications' memory accesses transparently, without code changes, at cache-line granularity. This simple idea (1) eliminates page faults from the application critical path when accessing remote data, and (2) decouples the application memory access tracking from the virtual memory page size, enabling cache-line granularity dirty data tracking and eviction. Using this observation, we implemented a new software runtime for disaggregated memory that improves average memory access time and reduces dirty data amplification1.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.