A Deep Learning Framework for the Detection of Tropical Cyclones From Satellite Images

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-09-01 DOI:10.36227/techrxiv.16432641
A. Nair, K. S. Srujan, Sayali Kulkarni, Kshitij Alwadhi, Navya Jain, H. Kodamana, S. Sukumaran, V. John
{"title":"A Deep Learning Framework for the Detection of Tropical Cyclones From Satellite Images","authors":"A. Nair, K. S. Srujan, Sayali Kulkarni, Kshitij Alwadhi, Navya Jain, H. Kodamana, S. Sukumaran, V. John","doi":"10.36227/techrxiv.16432641","DOIUrl":null,"url":null,"abstract":"Tropical cyclones (TCs) are the most destructive weather systems that form over the tropical oceans, with about 90 storms forming globally every year. The timely detection and tracking of TCs are important for advanced warning to the affected regions. As these storms form over the open oceans far from the continents, remote sensing plays a crucial role in detecting them. Here we present an automated TC detection from satellite images based on a novel deep learning technique. In this study, we propose a multistaged deep learning framework for the detection of TCs, including, 1) a detector—Mask region-convolutional neural network (R-CNN); 2) a wind speed filter; and 3) a classifier—convolutional neural network (CNN). The hyperparameters of the entire pipeline are optimized to showcase the best performance using Bayesian optimization. Results indicate that the proposed approach yields high precision (97.10%), specificity (97.59%), and accuracy (86.55%) for test images.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":" ","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36227/techrxiv.16432641","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9

Abstract

Tropical cyclones (TCs) are the most destructive weather systems that form over the tropical oceans, with about 90 storms forming globally every year. The timely detection and tracking of TCs are important for advanced warning to the affected regions. As these storms form over the open oceans far from the continents, remote sensing plays a crucial role in detecting them. Here we present an automated TC detection from satellite images based on a novel deep learning technique. In this study, we propose a multistaged deep learning framework for the detection of TCs, including, 1) a detector—Mask region-convolutional neural network (R-CNN); 2) a wind speed filter; and 3) a classifier—convolutional neural network (CNN). The hyperparameters of the entire pipeline are optimized to showcase the best performance using Bayesian optimization. Results indicate that the proposed approach yields high precision (97.10%), specificity (97.59%), and accuracy (86.55%) for test images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从卫星图像中检测热带气旋的深度学习框架
热带气旋是在热带海洋上空形成的最具破坏性的天气系统,全球每年约有90场风暴形成。及时发现和追踪TC对于向受影响地区发出预警非常重要。当这些风暴在远离大陆的公海上形成时,遥感在探测它们方面发挥着至关重要的作用。在这里,我们提出了一种基于新型深度学习技术的卫星图像TC自动检测。在这项研究中,我们提出了一个用于检测TC的多阶段深度学习框架,包括:1)检测器——掩码区域卷积神经网络(R-CNN);2) 风速过滤器;以及3)分类器——卷积神经网络(CNN)。使用贝叶斯优化对整个管道的超参数进行优化,以显示最佳性能。结果表明,所提出的方法对测试图像产生了高精度(97.10%)、特异性(97.59%)和准确性(86.55%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
A “Difference In Difference” based method for unsupervised change detection in season-varying images AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed Monitoring ten insect pests in selected orchards in three Azorean Islands: The project CUARENTAGRI. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1