TRANSFER LEARNING BASED OFFLINE YORÙBÁ HANDWRITTEN CHARACTER RECOGNITION SYSTEM

Oluwashina O. Oyeniran, E. Oyebode
{"title":"TRANSFER LEARNING BASED OFFLINE YORÙBÁ HANDWRITTEN CHARACTER RECOGNITION SYSTEM","authors":"Oluwashina O. Oyeniran, E. Oyebode","doi":"10.29081/jesr.v27i2.278","DOIUrl":null,"url":null,"abstract":"This study presents Transfer Learning-based framework through the use of AlexNet for the development of an offline Yorùbá Handwritten Character Recognition System. The system encompasses the upper and case characters of the Yorùbá language, and tonal letters that have a significant impact on the Yorùbá language. The model reported network accuracy of 82.8%, validation accuracy of 77.7%, with F1 score of 0.7795, precision of 0.7819 and Recall of 0.7771. While the average recognition time is estimated to 0.371372 seconds. Thus, the technique of deep learning has shown significant improvement when compared to other existing approaches in recognizing standard Yorùbá characters.","PeriodicalId":15687,"journal":{"name":"Journal of Engineering Studies and Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Studies and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29081/jesr.v27i2.278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents Transfer Learning-based framework through the use of AlexNet for the development of an offline Yorùbá Handwritten Character Recognition System. The system encompasses the upper and case characters of the Yorùbá language, and tonal letters that have a significant impact on the Yorùbá language. The model reported network accuracy of 82.8%, validation accuracy of 77.7%, with F1 score of 0.7795, precision of 0.7819 and Recall of 0.7771. While the average recognition time is estimated to 0.371372 seconds. Thus, the technique of deep learning has shown significant improvement when compared to other existing approaches in recognizing standard Yorùbá characters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的离线yorÙbÁ手写字符识别系统
本研究通过使用AlexNet开发离线约鲁巴手写字符识别系统,提出了基于迁移学习的框架。该系统包括约鲁巴语的大写字母和大小写字母,以及对约鲁巴语言有重大影响的音调字母。该模型报告的网络准确率为82.8%,验证准确率为77.7%,F1得分为0.7795,准确度为0.7819,召回率为0.7771。而平均识别时间估计为0.371372秒。因此,与其他现有方法相比,深度学习技术在识别标准约鲁巴字符方面有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
6 weeks
期刊最新文献
SOME POSSIBILITIES OF THE AERIAL DRONES USE IN PRECISION AGRICULTURE – A REVIEW RESEARCH ON THE RECOVERY OF SOME AGRICULTURAL WASTE FOR THE MANUFACTURE OF COMPOSITE MATERIALS WITH CLAY MATRICES PHYSICAL-MECHANICAL PERFORMANCES OF STEERING WHEEL COVER LEATHERS IN SPECIAL CONDITIONS CONTRIBUTION OF PETROGRAPHIC AND GEOCHEMICAL ANALYSES OF THE KIPALA SHALE (CENTRAL BASIN, DRC) TO THE ASSESSMENT OF ITS POTENTIAL AS A HYDROCARBON SOURCE ROCK A SPECIALTY LITERATURE REVIEW OF THE PREDICTIVE MAINTENANCE SYSTEMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1