Mechanically-prestressed pneumatically-driven bistable soft actuators

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL Journal of Mechanisms and Robotics-Transactions of the Asme Pub Date : 2023-07-11 DOI:10.1115/1.4062949
Yitong Zhou, Zefeng Xu
{"title":"Mechanically-prestressed pneumatically-driven bistable soft actuators","authors":"Yitong Zhou, Zefeng Xu","doi":"10.1115/1.4062949","DOIUrl":null,"url":null,"abstract":"Bistable soft robots are gaining momentum for their fast speed. This study presents a novel asymmetric mechanically-prestressed, pneumatically-driven, bistable laminated soft actuator. Its two orthogonal stable shapes are created by prestretching two orthogonal elastomer matrix composites (EMCs) before bonding them to a thin core layer. Two fluidic layers with fluid channels are bonded on either side of the core layer to actuate and trigger the snap-through process of the actuator. An analytical model is proposed as follows: the actuator net energy is calculated based on polynomials with unknown coefficients, and the stable shapes of the actuator are computed as a result of pneumatic pressure and external loads with the Rayleigh-Ritz method. Bistable actuators are fabricated with different prestrains, and motion capture and tensile loading experiments are conducted for model validation. A gripper is fabricated with two bistable actuators and demonstrated to grasp a variety of objects. Sensitivity studies are performed to identify the actuator response as a function of a variety of design parameters.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062949","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Bistable soft robots are gaining momentum for their fast speed. This study presents a novel asymmetric mechanically-prestressed, pneumatically-driven, bistable laminated soft actuator. Its two orthogonal stable shapes are created by prestretching two orthogonal elastomer matrix composites (EMCs) before bonding them to a thin core layer. Two fluidic layers with fluid channels are bonded on either side of the core layer to actuate and trigger the snap-through process of the actuator. An analytical model is proposed as follows: the actuator net energy is calculated based on polynomials with unknown coefficients, and the stable shapes of the actuator are computed as a result of pneumatic pressure and external loads with the Rayleigh-Ritz method. Bistable actuators are fabricated with different prestrains, and motion capture and tensile loading experiments are conducted for model validation. A gripper is fabricated with two bistable actuators and demonstrated to grasp a variety of objects. Sensitivity studies are performed to identify the actuator response as a function of a variety of design parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机械预应力气动双稳态软致动器
双稳态软机器人因其快速而获得动力。本研究提出了一种新型的非对称机械预应力、气动驱动、双稳态叠层软致动器。它的两个正交稳定形状是通过在将两个正交弹性体基体复合材料(EMCs)粘合到薄芯层之前预拉伸而形成的。具有流体通道的两个流体层结合在芯层的任一侧,以致动和触发致动器的卡扣过程。提出了一个分析模型:基于未知系数多项式计算致动器净能量,并使用瑞利-里兹方法计算致动器在气压和外部载荷作用下的稳定形状。利用不同的预应变制作了双稳态执行器,并进行了运动捕捉和拉伸加载实验以进行模型验证。夹具由两个双稳态致动器制成,并被证明可以抓取各种物体。进行灵敏度研究,以确定作为各种设计参数的函数的致动器响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
期刊最新文献
On the Construction of Confidence Regions for Uncertain Planar Displacements. Redundant Serial Manipulator Inverse Position Kinematics and Dynamics Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal Design and Analysis of a Novel Redundant Parallel Mechanism for Long Bone Fracture Reduction Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1