Hai Li;Dmitri E. Nikonov;Chia-Ching Lin;Kerem Camsari;Yu-Ching Liao;Chia-Sheng Hsu;Azad Naeemi;Ian A. Young
{"title":"Physics-Based Models for Magneto-Electric Spin-Orbit Logic Circuits","authors":"Hai Li;Dmitri E. Nikonov;Chia-Ching Lin;Kerem Camsari;Yu-Ching Liao;Chia-Sheng Hsu;Azad Naeemi;Ian A. Young","doi":"10.1109/JXCDC.2022.3143130","DOIUrl":null,"url":null,"abstract":"Spintronic devices provide a promising beyond-complementary metal-oxide-semiconductor (CMOS) device option, thanks to their energy efficiency and compatibility with CMOS. To accurately capture their multiphysics dynamics, a rigorous treatment of both spin and charge and their inter-conversion is required. Here, we present physics-based device models based on \n<inline-formula> <tex-math>$4\\times4$ </tex-math></inline-formula>\n matrices for the spin-orbit coupling (SOC) part of the magneto-electric spin-orbit (MESO) device. Also, a more rigorous physics model of ferroelectric and magnetoelectric (ME) switching of ferromagnets, based on Landau–Lifshitz–Gilbert (LLG) and Landau–Khalatnikov (LK) equations, are presented. With the combined model implemented in a SPICE circuit simulator environment, simulation results were obtained which show feasibility of the MESO implementation and the functional operation of buffers, synchronous oscillators, and majority gates.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9684158/09681806.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9681806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3
Abstract
Spintronic devices provide a promising beyond-complementary metal-oxide-semiconductor (CMOS) device option, thanks to their energy efficiency and compatibility with CMOS. To accurately capture their multiphysics dynamics, a rigorous treatment of both spin and charge and their inter-conversion is required. Here, we present physics-based device models based on
$4\times4$
matrices for the spin-orbit coupling (SOC) part of the magneto-electric spin-orbit (MESO) device. Also, a more rigorous physics model of ferroelectric and magnetoelectric (ME) switching of ferromagnets, based on Landau–Lifshitz–Gilbert (LLG) and Landau–Khalatnikov (LK) equations, are presented. With the combined model implemented in a SPICE circuit simulator environment, simulation results were obtained which show feasibility of the MESO implementation and the functional operation of buffers, synchronous oscillators, and majority gates.