{"title":"Studies on the Interaction between Derivatives of 9-Aacridinyl Amino Acid as Anticancer Drugs and Functionalized Carbon Nanotubes: ONIOM2-PCM Approach","authors":"N. Mahani","doi":"10.22036/PCR.2020.244303.1815","DOIUrl":null,"url":null,"abstract":"Recently, the derivatives of 9-acridinyl amino acid have been synthesized and introduced as the anticancer and antiproliferative agents. In this regard, the functionalized single-wall carbon nanotubes (f-SWCNTs) have been employed as a drug delivery system in the nanomedicine applications. The role of the functionalized armchair (5, 5) SWCNT in drug delivery of 9-acridinyl amino acid derivatives as anticancer agents was studied by combining quantum mechanics and molecular mechanics methods. Therefore, the present study was conducted to investigate and measure the binding properties of 9-acridinyl amino acid derivatives as the anticancer agents with pristine (5, 5) single-walled carbon nanotube (SWCNT) and functionalized SWCNT (COOH-SWCNT) by the ONIOM2 (B3LYP/6-311G: UFF) and ONIOM2-PCM methods. The structural and electronic properties, binding energy, highest occupied molecular orbital and lowest unoccupied molecular orbital of the most stable configuration were also analyzed. Our results displayed that the interaction of the nanotubes with the derivatives of 9-acridinyl amino acid was relatively weak likewise the interaction and adsorption of the anticancer agents with SWCNT can be physical. The interaction of the anticancer agents on the f-SWCNT was more intense to the pristine SWCNT. In the aqueous solution, the solubility of the f-SWCNT as the carrier was increased.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.244303.1815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the derivatives of 9-acridinyl amino acid have been synthesized and introduced as the anticancer and antiproliferative agents. In this regard, the functionalized single-wall carbon nanotubes (f-SWCNTs) have been employed as a drug delivery system in the nanomedicine applications. The role of the functionalized armchair (5, 5) SWCNT in drug delivery of 9-acridinyl amino acid derivatives as anticancer agents was studied by combining quantum mechanics and molecular mechanics methods. Therefore, the present study was conducted to investigate and measure the binding properties of 9-acridinyl amino acid derivatives as the anticancer agents with pristine (5, 5) single-walled carbon nanotube (SWCNT) and functionalized SWCNT (COOH-SWCNT) by the ONIOM2 (B3LYP/6-311G: UFF) and ONIOM2-PCM methods. The structural and electronic properties, binding energy, highest occupied molecular orbital and lowest unoccupied molecular orbital of the most stable configuration were also analyzed. Our results displayed that the interaction of the nanotubes with the derivatives of 9-acridinyl amino acid was relatively weak likewise the interaction and adsorption of the anticancer agents with SWCNT can be physical. The interaction of the anticancer agents on the f-SWCNT was more intense to the pristine SWCNT. In the aqueous solution, the solubility of the f-SWCNT as the carrier was increased.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.