Locationally Varying Production Technology and Productivity: The Case of Norwegian Farming

IF 1.1 Q3 ECONOMICS Econometrics Pub Date : 2023-08-18 DOI:10.3390/econometrics11030020
S. Kumbhakar, Jingfang Zhang, Gudbrand Lien
{"title":"Locationally Varying Production Technology and Productivity: The Case of Norwegian Farming","authors":"S. Kumbhakar, Jingfang Zhang, Gudbrand Lien","doi":"10.3390/econometrics11030020","DOIUrl":null,"url":null,"abstract":"In this study, we leverage geographical coordinates and firm-level panel data to uncover variations in production across different locations. Our approach involves using a semiparametric proxy variable regression estimator, which allows us to define and estimate a customized production function for each firm and its corresponding location. By employing kernel methods, we estimate the nonparametric functions that determine the model’s parameters based on latitude and longitude. Furthermore, our model incorporates productivity components that consider various factors that influence production. Unlike spatially autoregressive-type production functions that assume a uniform technology across all locations, our approach estimates technology and productivity at both the firm and location levels, taking into account their specific characteristics. To handle endogenous regressors, we incorporate a proxy variable identification technique, distinguishing our method from geographically weighted semiparametric regressions. To investigate the heterogeneity in production technology and productivity among Norwegian grain farmers, we apply our model to a sample of farms using panel data spanning from 2001 to 2020. Through this analysis, we provide empirical evidence of regional variations in both technology and productivity among Norwegian grain farmers. Finally, we discuss the suitability of our approach for addressing the heterogeneity in this industry.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11030020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we leverage geographical coordinates and firm-level panel data to uncover variations in production across different locations. Our approach involves using a semiparametric proxy variable regression estimator, which allows us to define and estimate a customized production function for each firm and its corresponding location. By employing kernel methods, we estimate the nonparametric functions that determine the model’s parameters based on latitude and longitude. Furthermore, our model incorporates productivity components that consider various factors that influence production. Unlike spatially autoregressive-type production functions that assume a uniform technology across all locations, our approach estimates technology and productivity at both the firm and location levels, taking into account their specific characteristics. To handle endogenous regressors, we incorporate a proxy variable identification technique, distinguishing our method from geographically weighted semiparametric regressions. To investigate the heterogeneity in production technology and productivity among Norwegian grain farmers, we apply our model to a sample of farms using panel data spanning from 2001 to 2020. Through this analysis, we provide empirical evidence of regional variations in both technology and productivity among Norwegian grain farmers. Finally, we discuss the suitability of our approach for addressing the heterogeneity in this industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生产技术和生产力的地域差异:挪威农业的案例
在这项研究中,我们利用地理坐标和公司层面的面板数据来揭示不同地区的生产变化。我们的方法包括使用半参数代理变量回归估计器,它允许我们定义和估计每个公司及其相应位置的定制生产函数。通过核方法,我们估计了基于纬度和经度确定模型参数的非参数函数。此外,我们的模型纳入了考虑影响生产的各种因素的生产率组成部分。与空间自回归型生产函数不同,该函数假设在所有地点采用统一的技术,我们的方法在考虑到它们的特定特征的情况下,对公司和地点水平的技术和生产率进行了估计。为了处理内生回归,我们结合了代理变量识别技术,将我们的方法与地理加权半参数回归区分开来。为了研究挪威粮食农民在生产技术和生产力方面的异质性,我们使用2001年至2020年的面板数据将我们的模型应用于农场样本。通过这一分析,我们提供了挪威粮食农民在技术和生产力方面的区域差异的经验证据。最后,我们讨论了我们的方法在解决这个行业的异质性方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1