I. M. Korrat, M. N. Elgabry, Ahmed Lethy, H. M. Hussein, Evrim Yavuz, Adel S. Othman
{"title":"Discrimination of quarry blasts from earthquakes in Northern and Central Egypt using linear and quadratic discriminant functions","authors":"I. M. Korrat, M. N. Elgabry, Ahmed Lethy, H. M. Hussein, Evrim Yavuz, Adel S. Othman","doi":"10.1007/s10950-023-10156-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract </h2><div><p>In this study, seismic events in Northern and Central Egypt are inspected to discriminate quarry blasts from earthquakes. We examine a collection of 639 events in both time and frequency domains with local magnitudes of 1.5 ≤ ML ≤ 3.3 from the Egyptian Seismological Network’s seismic event catalogue between 2009 and 2015. The maximum S-wave to the maximum P-wave amplitude ratio, complexity (C), spectral ratio (S<sub>r</sub>), and power of events (P<sub>e</sub>) classifiers as well as two statistical approaches, linear discriminant function (LDF) and quadratic discriminant function (QDF), are used to distinguish between earthquakes and quarry blasts. The usage of the LDF and QDF forms did not result in any major differences in the discrimination. The results obtained by the LDF and QDF from (P<sub>e</sub>-C) are the best of all approaches. The findings of all approaches were compared to get a final categorization for each event, and a decision was achieved when at least three of the four methods provided the same event category. In Northern Egypt, 243 earthquakes and 308 quarry blasts could be identified as final decisions, with two misclassified events, resulting in an overall success rate of 99.6%. In Central Egypt, 48 earthquakes and 36 quarry blasts were classified as a final decision, with two misclassified events, for an overall success percentage of 97.6%.\n</p></div></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-023-10156-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-023-10156-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract
In this study, seismic events in Northern and Central Egypt are inspected to discriminate quarry blasts from earthquakes. We examine a collection of 639 events in both time and frequency domains with local magnitudes of 1.5 ≤ ML ≤ 3.3 from the Egyptian Seismological Network’s seismic event catalogue between 2009 and 2015. The maximum S-wave to the maximum P-wave amplitude ratio, complexity (C), spectral ratio (Sr), and power of events (Pe) classifiers as well as two statistical approaches, linear discriminant function (LDF) and quadratic discriminant function (QDF), are used to distinguish between earthquakes and quarry blasts. The usage of the LDF and QDF forms did not result in any major differences in the discrimination. The results obtained by the LDF and QDF from (Pe-C) are the best of all approaches. The findings of all approaches were compared to get a final categorization for each event, and a decision was achieved when at least three of the four methods provided the same event category. In Northern Egypt, 243 earthquakes and 308 quarry blasts could be identified as final decisions, with two misclassified events, resulting in an overall success rate of 99.6%. In Central Egypt, 48 earthquakes and 36 quarry blasts were classified as a final decision, with two misclassified events, for an overall success percentage of 97.6%.
期刊介绍:
Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence.
Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.