{"title":"Robust condition‐based production and maintenance planning for degradation management","authors":"Qiuzhuang Sun, Piao Chen, Xin Wang, Zhi-Sheng Ye","doi":"10.1111/poms.14071","DOIUrl":null,"url":null,"abstract":"We study the robust production and maintenance control for a production system subject to degradation. A periodic maintenance scheme is considered, and the system production rate can be dynamically adjusted before maintenance, serving as a proactive way of degradation management. Optimal control of the degradation rate aims to strike a balance between the risk of failure and the production profit. We first consider the scenario in which the degradation rate increases linearly with the production rate. Different from the existing literature that posits a parametric stochastic degradation process, we suppose that the degradation increment during a period lies in an uncertainty set, and our objective is to minimize the maintenance cost in the worst case. The resulting model is a robust mixed‐integer linear program. We derive its robust counterpart and establish structural properties of the optimal production plan. These properties are then used for real‐time condition‐based control of the production rate through reoptimization. The model is further generalized to the nonlinear production‐degradation relation. Based on a real production‐degradation dataset from an extruder system, we conduct comprehensive numerical experiments to illustrate the application of the model. Numerical results show that our model significantly outperforms existing methods in terms of the mean and variance of cost rate when degradation model misspecification is presented.This article is protected by copyright. All rights reserved","PeriodicalId":20623,"journal":{"name":"Production and Operations Management","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production and Operations Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1111/poms.14071","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
We study the robust production and maintenance control for a production system subject to degradation. A periodic maintenance scheme is considered, and the system production rate can be dynamically adjusted before maintenance, serving as a proactive way of degradation management. Optimal control of the degradation rate aims to strike a balance between the risk of failure and the production profit. We first consider the scenario in which the degradation rate increases linearly with the production rate. Different from the existing literature that posits a parametric stochastic degradation process, we suppose that the degradation increment during a period lies in an uncertainty set, and our objective is to minimize the maintenance cost in the worst case. The resulting model is a robust mixed‐integer linear program. We derive its robust counterpart and establish structural properties of the optimal production plan. These properties are then used for real‐time condition‐based control of the production rate through reoptimization. The model is further generalized to the nonlinear production‐degradation relation. Based on a real production‐degradation dataset from an extruder system, we conduct comprehensive numerical experiments to illustrate the application of the model. Numerical results show that our model significantly outperforms existing methods in terms of the mean and variance of cost rate when degradation model misspecification is presented.This article is protected by copyright. All rights reserved
期刊介绍:
The mission of Production and Operations Management is to serve as the flagship research journal in operations management in manufacturing and services. The journal publishes scientific research into the problems, interest, and concerns of managers who manage product and process design, operations, and supply chains. It covers all topics in product and process design, operations, and supply chain management and welcomes papers using any research paradigm.