Ramadan Abdelrehim, Mohamed Ahmed, Mark E. Everett
{"title":"Hydrogeologic controls on barrier island geomorphology: Insights from electromagnetic surveys","authors":"Ramadan Abdelrehim, Mohamed Ahmed, Mark E. Everett","doi":"10.1190/tle42090608.1","DOIUrl":null,"url":null,"abstract":"Barrier islands provide a first line of defense for coastal communities against storms, hurricanes, and sea-level rise. The geomorphology of barrier islands exerts a major control on storm impact and island recovery. In turn, barrier island geomorphology is affected by subsurface hydrogeologic conditions. In this study, we investigated the relationship between subsurface hydrogeologic conditions and geomorphology of Padre Island, with a focus on the influence of human development. We measured apparent electrical conductivities using frequency-domain electromagnetic (FDEM) surveys and spatially correlated them with the island's morphology. The latter was generated from a 1 m resolution digital elevation model. Four distinct zones were identified from the observed variations in apparent conductivity and elevation, revealing their inverse correlation. The beach area (Zone I) exhibits the highest apparent conductivity (289.7 ± 66.3 mS/m) and the lowest elevations (1.4 ± 0.2 m). These trends are largely due to the proximity of the beach to saline groundwater and maritime floods. Conversely, the foredune area (Zone II) presents the lowest apparent conductivity (19.0 ± 3.4 mS/m) and the highest elevation (4.5 ± 0.4 m) due to a greater distance from saline waters, deeper groundwater levels, and relatively dry soil conditions. Human development has significantly impacted Zones III (east central zone) and IV (west central zone), contributing to an increase in apparent conductivity (Zone III: 40.3 ± 21.8 mS/m; Zone IV: 159.5 ± 83.0 mS/m) and a reduction in elevation (Zone III: 2.1 ± 0.5 m; Zone IV: 1.3 ± 0.4 m). Anthropogenic activities have modified hydrologic patterns, introduced conductive materials, and altered vegetation cover and soil composition. This research elucidates the interplay between subsurface electrical conductivity, surface morphology, and the impact of human development on barrier island geomorphology, providing crucial insights for coastal management and conservation efforts.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42090608.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Barrier islands provide a first line of defense for coastal communities against storms, hurricanes, and sea-level rise. The geomorphology of barrier islands exerts a major control on storm impact and island recovery. In turn, barrier island geomorphology is affected by subsurface hydrogeologic conditions. In this study, we investigated the relationship between subsurface hydrogeologic conditions and geomorphology of Padre Island, with a focus on the influence of human development. We measured apparent electrical conductivities using frequency-domain electromagnetic (FDEM) surveys and spatially correlated them with the island's morphology. The latter was generated from a 1 m resolution digital elevation model. Four distinct zones were identified from the observed variations in apparent conductivity and elevation, revealing their inverse correlation. The beach area (Zone I) exhibits the highest apparent conductivity (289.7 ± 66.3 mS/m) and the lowest elevations (1.4 ± 0.2 m). These trends are largely due to the proximity of the beach to saline groundwater and maritime floods. Conversely, the foredune area (Zone II) presents the lowest apparent conductivity (19.0 ± 3.4 mS/m) and the highest elevation (4.5 ± 0.4 m) due to a greater distance from saline waters, deeper groundwater levels, and relatively dry soil conditions. Human development has significantly impacted Zones III (east central zone) and IV (west central zone), contributing to an increase in apparent conductivity (Zone III: 40.3 ± 21.8 mS/m; Zone IV: 159.5 ± 83.0 mS/m) and a reduction in elevation (Zone III: 2.1 ± 0.5 m; Zone IV: 1.3 ± 0.4 m). Anthropogenic activities have modified hydrologic patterns, introduced conductive materials, and altered vegetation cover and soil composition. This research elucidates the interplay between subsurface electrical conductivity, surface morphology, and the impact of human development on barrier island geomorphology, providing crucial insights for coastal management and conservation efforts.
期刊介绍:
THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.