{"title":"Design Calculations of the Limiting Characteristics of Heat Pipes for Cooling Active Phased Antenna Arrays","authors":"S. Radaev","doi":"10.37394/232011.2021.16.15","DOIUrl":null,"url":null,"abstract":"The article provides an algorithm for calculating the limiting characteristics of heat pipes for cooling active phased antenna arrays at a given saturation temperature. The maximum transmitted power is determined taking into account the limitations of the heat pipes operation by the capillary limit, by boiling (transition to film boiling, boiling limit), by the sonic limit at which the speed of steam reaches the speed of sound (sonic limit), by the entrainment of droplets liquid coolant from the surface of the wick with a counter flow of steam (entertainment limit) and viscous limit, which is realized at low temperatures (viscous limit). It is shown that an increase in the thickness of the wick and its porosity may be necessary to increase the capillary limit of heat pipes, while an increase in the thickness of the wick increases the thermal resistance of the tube and, accordingly, can lead to overheating of the cooled elements. Based on the above algorithm, design calculations for two types of heat pipes have been carried out. The dependences of various limits of the heat pipe on the operating temperature are plotted. Based on the above algorithm, calculations were performed for two types of heat pipes.","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2021.16.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
The article provides an algorithm for calculating the limiting characteristics of heat pipes for cooling active phased antenna arrays at a given saturation temperature. The maximum transmitted power is determined taking into account the limitations of the heat pipes operation by the capillary limit, by boiling (transition to film boiling, boiling limit), by the sonic limit at which the speed of steam reaches the speed of sound (sonic limit), by the entrainment of droplets liquid coolant from the surface of the wick with a counter flow of steam (entertainment limit) and viscous limit, which is realized at low temperatures (viscous limit). It is shown that an increase in the thickness of the wick and its porosity may be necessary to increase the capillary limit of heat pipes, while an increase in the thickness of the wick increases the thermal resistance of the tube and, accordingly, can lead to overheating of the cooled elements. Based on the above algorithm, design calculations for two types of heat pipes have been carried out. The dependences of various limits of the heat pipe on the operating temperature are plotted. Based on the above algorithm, calculations were performed for two types of heat pipes.
期刊介绍:
WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.