AN EFFICIENT SENTIMENT ANALYSIS BASED DEEP LEARNING CLASSIFICATION MODEL TO EVALUATE TREATMENT QUALITY

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Malaysian Journal of Computer Science Pub Date : 2022-01-31 DOI:10.22452/mjcs.vol35no1.1
Samer Abdulateef Waheeb, Naseer Ahmed Khan, Xuequn Shang
{"title":"AN EFFICIENT SENTIMENT ANALYSIS BASED DEEP LEARNING CLASSIFICATION MODEL TO EVALUATE TREATMENT QUALITY","authors":"Samer Abdulateef Waheeb, Naseer Ahmed Khan, Xuequn Shang","doi":"10.22452/mjcs.vol35no1.1","DOIUrl":null,"url":null,"abstract":"Extracting information using an automated system from unstructured medical documents related to patients discharge summaries in the health care centers is considered a big challenge. Sentiment analysis of medical records has gained significant attention worldwide to understand the behaviors of both clinicians and patients. However, Sentiment analysis of discharge summary still does not provide a clear picture of the information available in these summaries. This study proposes a machine learning-based novel sentiment analysis unsupervised techniques to classify discharge summaries using TF-IDF, Word2Vec, GloVe, FastText, and BERT as deep learning approaches with statistical methods, and clustering. Our proposed model is an unsupervised sentiment framework that provides good understanding and insights of the clinical features that are not captured in the electronic health data records. Moreover, it’s a hybrid sentiment model consisting of clustering technique and vector space models for selecting the distinctive terms. The main intensity of measured sentiment is captured using the polarity of positive and negative terms in the discharge summary. The combination of SentiWordNet platform and our approach is used to build a lexicon sentiment dataset (assignment polarity). Experiments shows that our suggested method achieves 93% accuracy and significantly outperforms other state of the art approaches based on the inspiration of sentiment analysis technique to examine the treatment quality for discharge summaries.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol35no1.1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Extracting information using an automated system from unstructured medical documents related to patients discharge summaries in the health care centers is considered a big challenge. Sentiment analysis of medical records has gained significant attention worldwide to understand the behaviors of both clinicians and patients. However, Sentiment analysis of discharge summary still does not provide a clear picture of the information available in these summaries. This study proposes a machine learning-based novel sentiment analysis unsupervised techniques to classify discharge summaries using TF-IDF, Word2Vec, GloVe, FastText, and BERT as deep learning approaches with statistical methods, and clustering. Our proposed model is an unsupervised sentiment framework that provides good understanding and insights of the clinical features that are not captured in the electronic health data records. Moreover, it’s a hybrid sentiment model consisting of clustering technique and vector space models for selecting the distinctive terms. The main intensity of measured sentiment is captured using the polarity of positive and negative terms in the discharge summary. The combination of SentiWordNet platform and our approach is used to build a lexicon sentiment dataset (assignment polarity). Experiments shows that our suggested method achieves 93% accuracy and significantly outperforms other state of the art approaches based on the inspiration of sentiment analysis technique to examine the treatment quality for discharge summaries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的基于情绪分析的深度学习分类模型用于评估治疗质量
在医疗保健中心,使用自动化系统从与患者出院摘要相关的非结构化医疗文档中提取信息被认为是一个巨大的挑战。对病历的情感分析在全世界引起了极大的关注,以了解临床医生和患者的行为。然而,出院总结的情绪分析仍然没有提供这些总结中可用信息的清晰画面。本研究提出了一种基于机器学习的新型情绪分析无监督技术,将TF-IDF、Word2Vec、GloVe、FastText和BERT作为深度学习方法,结合统计方法和聚类,对出院总结进行分类。我们提出的模型是一个无监督的情绪框架,它提供了对电子健康数据记录中未捕获的临床特征的良好理解和见解。此外,它是一个由聚类技术和向量空间模型组成的混合情感模型,用于选择不同的术语。测量情绪的主要强度是使用出院总结中正负项的极性来捕捉的。SentiWordNet平台和我们的方法相结合,用于构建词典情感数据集(赋值极性)。实验表明,我们提出的方法达到了93%的准确率,显著优于其他基于情感分析技术的现有方法,以检查出院总结的治疗质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Malaysian Journal of Computer Science
Malaysian Journal of Computer Science COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
2.20
自引率
33.30%
发文量
35
审稿时长
7.5 months
期刊介绍: The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication.  The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus
期刊最新文献
METHODICAL EVALUATION OF HEALTHCARE INTELLIGENCE FOR HUMAN LIFE DISEASE DETECTION DISINFORMATION DETECTION ABOUT ISLAMIC ISSUES ON SOCIAL MEDIA USING DEEP LEARNING TECHNIQUES ENHANCING SECURITY OF RFID-ENABLED IOT SUPPLY CHAIN A TRACE CLUSTERING FRAMEWORK FOR IMPROVING THE BEHAVIORAL AND STRUCTURAL QUALITY OF PROCESS MODELS IN PROCESS MINING IMPROVING COVERAGE AND NOVELTY OF ABSTRACTIVE TEXT SUMMARIZATION USING TRANSFER LEARNING AND DIVIDE AND CONQUER APPROACHES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1