Felix Neff, Daniel Prati, Rafael Achury, Didem Ambarlı, Ralph Bolliger, Martin Brändle, Martin Freitag, Norbert Hölzel, Till Kleinebecker, Arturo Knecht, Deborah Schäfer, Peter Schall, Sebastian Seibold, Michael Staab, Wolfgang W. Weisser, Loïc Pellissier, Martin M. Gossner
{"title":"Reduction of invertebrate herbivory by land use is only partly explained by changes in plant and insect characteristics","authors":"Felix Neff, Daniel Prati, Rafael Achury, Didem Ambarlı, Ralph Bolliger, Martin Brändle, Martin Freitag, Norbert Hölzel, Till Kleinebecker, Arturo Knecht, Deborah Schäfer, Peter Schall, Sebastian Seibold, Michael Staab, Wolfgang W. Weisser, Loïc Pellissier, Martin M. Gossner","doi":"10.1002/ecm.1571","DOIUrl":null,"url":null,"abstract":"<p>Invertebrate herbivory is a crucial process contributing to the cycling of nutrients and energy in terrestrial ecosystems. While the function of herbivory can decrease with land-use intensification, the underlying mechanisms remain unclear. We hypothesize that land-use intensification impacts invertebrate leaf herbivory rates mainly through changes in characteristics of plants and insect herbivores. We investigated herbivory rates (i.e., damaged leaf area) on the most abundant plant species in forests and grasslands and along land-use intensity gradients on 297 plots in three regions of Germany. To evaluate the contribution of shifts in plant community composition, we quantified herbivory rates at plant species level and aggregated at plant community level. We analyzed pathways linking land-use intensity, plant and insect herbivore characteristics, and herbivory rates. Herbivory rates at plant species and community level decreased with increasing land-use intensity in forests and grasslands. Path analysis revealed strong direct links between land-use intensity and herbivory rates. Particularly at the plant community level, differences in plant and herbivore composition also contributed to changes in herbivory rates along land-use intensity gradients. In forests, high land-use intensity was characterized by a larger proportion of coniferous trees, which was linked to reduced herbivory rates. In grasslands, changes in the proportion of grasses, plant fiber content, as well as the taxonomic composition of herbivore assemblages contributed to reduced herbivory rates. Our study highlights the potential of land-use intensification to impair ecosystem functioning across ecosystems via shifts in plant and herbivore characteristics. De-intensifying land use in grasslands and reducing the share of coniferous trees in temperate forests can help to restore ecosystem functionality in these systems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 2","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1571","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1571","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Invertebrate herbivory is a crucial process contributing to the cycling of nutrients and energy in terrestrial ecosystems. While the function of herbivory can decrease with land-use intensification, the underlying mechanisms remain unclear. We hypothesize that land-use intensification impacts invertebrate leaf herbivory rates mainly through changes in characteristics of plants and insect herbivores. We investigated herbivory rates (i.e., damaged leaf area) on the most abundant plant species in forests and grasslands and along land-use intensity gradients on 297 plots in three regions of Germany. To evaluate the contribution of shifts in plant community composition, we quantified herbivory rates at plant species level and aggregated at plant community level. We analyzed pathways linking land-use intensity, plant and insect herbivore characteristics, and herbivory rates. Herbivory rates at plant species and community level decreased with increasing land-use intensity in forests and grasslands. Path analysis revealed strong direct links between land-use intensity and herbivory rates. Particularly at the plant community level, differences in plant and herbivore composition also contributed to changes in herbivory rates along land-use intensity gradients. In forests, high land-use intensity was characterized by a larger proportion of coniferous trees, which was linked to reduced herbivory rates. In grasslands, changes in the proportion of grasses, plant fiber content, as well as the taxonomic composition of herbivore assemblages contributed to reduced herbivory rates. Our study highlights the potential of land-use intensification to impair ecosystem functioning across ecosystems via shifts in plant and herbivore characteristics. De-intensifying land use in grasslands and reducing the share of coniferous trees in temperate forests can help to restore ecosystem functionality in these systems.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.