首页 > 最新文献

Ecological Monographs最新文献

英文 中文
Connecting local and regional scales with stochastic metacommunity models: Competition, ecological drift, and dispersal 将局部和区域尺度与随机元群落模型联系起来:竞争、生态漂移和扩散
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-08-21 DOI: 10.1002/ecm.1591
Brian A. Lerch, Akshata Rudrapatna, Nasser Rabi, Jonas Wickman, Thomas Koffel, Christopher A. Klausmeier

Despite the well known scale-dependency of ecological interactions, relatively little attention has been paid to understanding the dynamic interplay between various spatial scales. This is especially notable in metacommunity theory, where births and deaths dominate dynamics within patches (the local scale), and dispersal and environmental stochasticity dominate dynamics between patches (the regional scale). By considering the interplay of local and regional scales in metacommunities, the fundamental processes of community ecology—selection, drift, and dispersal—can be unified into a single theoretical framework. Here, we analyze three related spatial models that build on the classic two-species Lotka–Volterra competition model. Two open-system models focus on a single patch coupled to a larger fixed landscape by dispersal. The first is deterministic, while the second adds demographic stochasticity to allow ecological drift. Finally, the third model is a true metacommunity model with dispersal between a large number of local patches, which allows feedback between local and regional scales and captures the well studied metacommunity paradigms as special cases. Unlike previous simulation models, our metacommunity model allows the numerical calculation of equilibria and invasion criteria to precisely determine the outcome of competition at the regional scale. We show that both dispersal and stochasticity can lead to regional outcomes that are different than predicted by the classic Lotka–Volterra competition model. Regional exclusion can occur when the nonspatial model predicts coexistence or founder control, due to ecological drift or asymmetric stochastic switching between basins of attraction, respectively. Regional coexistence can result from local coexistence mechanisms or through competition-colonization or successional-niche trade-offs. Larger dispersal rates are typically competitively advantageous, except in the case of local founder control, which can favor intermediate dispersal rates. Broadly, our models demonstrate the importance of feedback between local and regional scales in competitive metacommunities and provide a unifying framework for understanding how selection, drift, and dispersal jointly shape ecological communities.

尽管众所周知,生态相互作用具有尺度依赖性,但人们对不同空间尺度之间动态相互作用的理解却相对较少。这在元群落理论中尤其显著,其中出生和死亡主导着斑块内的动态(局部尺度),而分散和环境随机性主导着斑块之间的动态(区域尺度)。通过考虑元群落中局部和区域尺度的相互作用,群落生态学的基本过程——选择、漂移和扩散——可以统一到一个单一的理论框架中。本文以Lotka - Volterra两物种竞争模型为基础,分析了三个相关的空间模型。两个开放系统模型关注的是单个斑块通过扩散与更大的固定景观耦合。前者是决定性的,而后者则增加了人口统计学的随机性,以允许生态漂移。最后,第三个模型是一个真正的元群落模型,它在大量局部斑块之间分散,允许局部和区域尺度之间的反馈,并将研究得很好的元群落范式作为特殊情况。与以往的模拟模型不同,我们的元群落模型允许对均衡和入侵标准进行数值计算,以精确地确定区域尺度上的竞争结果。研究表明,分散性和随机性都可能导致不同于经典Lotka‐Volterra竞争模型预测的区域结果。当非空间模型预测共存或奠基者控制时,区域排斥可能发生,原因分别是生态漂移或吸引力盆地之间的不对称随机转换。区域共存可以通过局部共存机制或竞争-殖民化或演替-生态位权衡来实现。较大的扩散速率通常具有竞争优势,但局部创立者控制的情况除外,后者有利于中间扩散速率。总的来说,我们的模型证明了竞争元群落中地方和区域尺度之间反馈的重要性,并为理解选择、漂移和扩散如何共同塑造生态群落提供了一个统一的框架。
{"title":"Connecting local and regional scales with stochastic metacommunity models: Competition, ecological drift, and dispersal","authors":"Brian A. Lerch,&nbsp;Akshata Rudrapatna,&nbsp;Nasser Rabi,&nbsp;Jonas Wickman,&nbsp;Thomas Koffel,&nbsp;Christopher A. Klausmeier","doi":"10.1002/ecm.1591","DOIUrl":"10.1002/ecm.1591","url":null,"abstract":"<p>Despite the well known scale-dependency of ecological interactions, relatively little attention has been paid to understanding the dynamic interplay between various spatial scales. This is especially notable in metacommunity theory, where births and deaths dominate dynamics within patches (the local scale), and dispersal and environmental stochasticity dominate dynamics between patches (the regional scale). By considering the interplay of local and regional scales in metacommunities, the fundamental processes of community ecology—selection, drift, and dispersal—can be unified into a single theoretical framework. Here, we analyze three related spatial models that build on the classic two-species Lotka–Volterra competition model. Two open-system models focus on a single patch coupled to a larger fixed landscape by dispersal. The first is deterministic, while the second adds demographic stochasticity to allow ecological drift. Finally, the third model is a true metacommunity model with dispersal between a large number of local patches, which allows feedback between local and regional scales and captures the well studied metacommunity paradigms as special cases. Unlike previous simulation models, our metacommunity model allows the numerical calculation of equilibria and invasion criteria to precisely determine the outcome of competition at the regional scale. We show that both dispersal and stochasticity can lead to regional outcomes that are different than predicted by the classic Lotka–Volterra competition model. Regional exclusion can occur when the nonspatial model predicts coexistence or founder control, due to ecological drift or asymmetric stochastic switching between basins of attraction, respectively. Regional coexistence can result from local coexistence mechanisms or through competition-colonization or successional-niche trade-offs. Larger dispersal rates are typically competitively advantageous, except in the case of local founder control, which can favor intermediate dispersal rates. Broadly, our models demonstrate the importance of feedback between local and regional scales in competitive metacommunities and provide a unifying framework for understanding how selection, drift, and dispersal jointly shape ecological communities.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47517675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sequence of multiyear wet and dry periods provides opportunities for grass recovery and state change reversals 连续多年的干湿期为草地恢复和状态变化逆转提供了机会
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-08-03 DOI: 10.1002/ecm.1590
Debra P. C. Peters, Heather M. Savoy

Multiyear periods (≥4 years) of extreme rainfall are increasing in frequency as climate continues to change, yet there is little understanding of how rainfall amount and heterogeneity in biophysical properties affect state changes in a sequence of wet and dry periods. Our objective was to examine the importance of rainfall periods, their legacies, and vegetation and soil properties to either the persistence of woody plants or a shift toward perennial grass dominance and a state reversal. We examined a 28-year record of rainfall consisting of a sequence of multiyear periods (average, dry, wet, dry, average) for four ecosystem types in the Jornada Basin. We analyzed relationships between above ground net primary production (ANPP) and rainfall for three plant functional groups that characterize alternative states (perennial grasses, other herbaceous plants, dominant shrubs). A multimodel comparison was used to determine the relative importance of rainfall, soil, and vegetation properties. For perennial grasses, the greatest mean ANPP in mesquite- and tarbush-dominated shrublands occurred in the wet period and in the dry period following the wet period in grasslands. Legacy effects in grasslands were asymmetric, where the lowest production was found in a dry period following an average period, and the greatest production occurred in a dry period following a wet period. For other herbaceous plants, in contrast, the greatest ANPP occurred in the wet period. Mesquite was the only dominant shrub species with a significant positive response in the wet period. Rainfall amount was a poor predictor of ANPP for each functional group when data from all periods were combined. Initial herbaceous biomass at the plant scale, patch-scale biomass, and soil texture at the landscape scale improved the predictive relationships of ANPP compared with rainfall alone. Under future climate, perennial grass production is expected to benefit the most from wet periods compared with other functional groups with continued high grass production in subsequent dry periods that can shift (desertified) shrublands toward grasslands. The continued dominance by shrubs will depend on the effects that rainfall has on perennial grasses and the sequence of high- and low-rainfall periods rather than the direct effects of rainfall on shrub production.

随着气候的持续变化,多年期(≥4年)的极端降雨频率不断增加,但人们对降雨量和生物物理特性的异质性如何影响一系列干湿期的状态变化知之甚少。我们的目标是研究降雨期、其遗产以及植被和土壤特性对木本植物的持久性或向多年生草本植物优势的转变和状态逆转的重要性。我们研究了Jornada盆地四种生态系统类型的28年降雨记录,包括一系列多年期(平均、干燥、潮湿、干燥、平均)。我们分析了三个植物功能群(多年生草、其他草本植物、优势灌木)地上净初级生产力(ANPP)与降雨量之间的关系。使用多模型比较来确定降雨、土壤和植被特性的相对重要性。对于多年生草本植物来说,在梅斯基特和tarbush占主导地位的灌木林中,ANPP的最大平均值出现在湿润期,在草原中,在湿润期之后的干旱期。草原的遗留影响是不对称的,产量最低的是在平均期之后的干旱期,产量最高的是在潮湿期之后的干燥期。相反,对于其他草本植物,ANPP最大发生在湿润期。梅斯基特是唯一一种在湿润期具有显著正响应的优势灌木物种。当所有时期的数据结合在一起时,降雨量是每个功能组ANPP的较差预测指标。与单独降雨相比,植物尺度的初始草本生物量、斑块尺度的生物量和景观尺度的土壤质地改善了ANPP的预测关系。在未来的气候下,与其他功能群体相比,多年生草的生产预计将从湿润期受益最大,在随后的干旱期,多年生草产量将持续高企,这可能会使(沙漠化的)灌木林转向草原。灌木的持续优势将取决于降雨对多年生草本植物的影响以及高降雨量和低降雨量的顺序,而不是降雨对灌木生产的直接影响。这篇文章受版权保护。保留所有权利。
{"title":"A sequence of multiyear wet and dry periods provides opportunities for grass recovery and state change reversals","authors":"Debra P. C. Peters,&nbsp;Heather M. Savoy","doi":"10.1002/ecm.1590","DOIUrl":"10.1002/ecm.1590","url":null,"abstract":"<p>Multiyear periods (≥4 years) of extreme rainfall are increasing in frequency as climate continues to change, yet there is little understanding of how rainfall amount and heterogeneity in biophysical properties affect state changes in a sequence of wet and dry periods. Our objective was to examine the importance of rainfall periods, their legacies, and vegetation and soil properties to either the persistence of woody plants or a shift toward perennial grass dominance and a state reversal. We examined a 28-year record of rainfall consisting of a sequence of multiyear periods (average, dry, wet, dry, average) for four ecosystem types in the Jornada Basin. We analyzed relationships between above ground net primary production (ANPP) and rainfall for three plant functional groups that characterize alternative states (perennial grasses, other herbaceous plants, dominant shrubs). A multimodel comparison was used to determine the relative importance of rainfall, soil, and vegetation properties. For perennial grasses, the greatest mean ANPP in mesquite- and tarbush-dominated shrublands occurred in the wet period and in the dry period following the wet period in grasslands. Legacy effects in grasslands were asymmetric, where the lowest production was found in a dry period following an average period, and the greatest production occurred in a dry period following a wet period. For other herbaceous plants, in contrast, the greatest ANPP occurred in the wet period. Mesquite was the only dominant shrub species with a significant positive response in the wet period. Rainfall amount was a poor predictor of ANPP for each functional group when data from all periods were combined. Initial herbaceous biomass at the plant scale, patch-scale biomass, and soil texture at the landscape scale improved the predictive relationships of ANPP compared with rainfall alone. Under future climate, perennial grass production is expected to benefit the most from wet periods compared with other functional groups with continued high grass production in subsequent dry periods that can shift (desertified) shrublands toward grasslands. The continued dominance by shrubs will depend on the effects that rainfall has on perennial grasses and the sequence of high- and low-rainfall periods rather than the direct effects of rainfall on shrub production.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44580517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological dynamic regimes: Identification, characterization, and comparison 生态动态机制:识别、表征和比较
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-08-03 DOI: 10.1002/ecm.1589
Martina Sánchez-Pinillos, Sonia Kéfi, Miquel De Cáceres, Vasilis Dakos

Understanding ecological dynamics has been a central topic in ecology since its origins. Yet, identifying dynamic regimes remains a research frontier for modern ecology. The concept of ecological dynamic regime (EDR) emerged to emphasize the dynamic property of steady states in nature and refers to the fluctuations of ecosystems around some trend or average. Identifying and characterizing EDRs is of utmost importance in the current context of global change since they form the reference against which post-disturbance dynamics must be compared to assess ecological resilience. However, the implementation of EDRs in empirical science is still challenging given the high dimensionality and stochasticity of ecological data and the large volume of data required to distinguish stochastic dynamics from general and predictable dynamics. The era of big data and the recent advances in quantitative ecology and data science offer an opportunity to study dynamic regimes using empirical approaches from a new perspective. This paper presents a novel methodological framework to describe EDRs from a set of ecological trajectories defined by the temporal changes of state variables in a multidimensional state space. In our framework, we formally define EDRs and include analytical tools to identify, characterize, and compare EDRs based on their geometric characteristics. More specifically, we propose different ways to identify EDRs from empirical data, develop a new algorithm to identify representative trajectories summarizing the main dynamic patterns, propose a set of metrics to describe the internal distribution of ecological trajectories, and define a dissimilarity index to compare two or more dynamic regimes based on their shape and position in the state space. We used artificial data to illustrate the different elements of our framework and applied our analyses to real data, using permanent sampling plots of Canadian boreal forests as an example. Overall, our framework contributes to filling the gap between theoretical and empirical ecology by providing robust analytical tools to assess ecological resilience and study ecosystem dynamics from a multidimensional perspective and considering the variability of natural systems.

从生态学产生之日起,理解生态动力学就一直是生态学的一个中心话题。然而,识别动态机制仍然是现代生态学的一个研究前沿。生态动态机制的概念是为了强调自然界稳定状态的动态特性而产生的,指的是生态系统围绕某种趋势或平均值的波动。在当前全球变化的背景下,识别和表征生态动态机制至关重要,因为它们构成了必须对扰动后动态进行比较以评估生态恢复力的参考。然而,鉴于生态数据的高维度和随机性,以及区分随机动力学与一般和可预测动力学所需的大量数据,在实证科学中实施生态动力学机制仍然具有挑战性。大数据时代以及定量生态学和数据科学的最新进展为从新的角度使用实证方法研究动态机制提供了机会。本文提出了一种新的方法论框架,从多维状态空间中状态变量的时间变化定义的一组生态轨迹来描述生态动态机制。在我们的框架中,我们正式定义了生态动态机制,并包括基于其几何特征识别、表征和比较生态动态机制的分析工具。更具体地说,我们提出了从经验数据中识别生态动态状况的不同方法,开发了一种新的算法来识别总结主要动态模式的代表性轨迹,提出了一组描述生态轨迹内部分布的指标,并且定义相异性指数以基于两个或更多个动态状态在状态空间中的形状和位置来比较它们。我们使用人工数据来说明我们框架的不同元素,并将我们的分析应用于真实数据,以加拿大北方森林的永久采样点为例。总的来说,我们的框架通过提供强大的分析工具,从多维角度评估生态恢复力和研究生态系统动力学,并考虑自然系统的可变性,有助于填补理论生态学和实证生态学之间的空白。
{"title":"Ecological dynamic regimes: Identification, characterization, and comparison","authors":"Martina Sánchez-Pinillos,&nbsp;Sonia Kéfi,&nbsp;Miquel De Cáceres,&nbsp;Vasilis Dakos","doi":"10.1002/ecm.1589","DOIUrl":"10.1002/ecm.1589","url":null,"abstract":"<p>Understanding ecological dynamics has been a central topic in ecology since its origins. Yet, identifying dynamic regimes remains a research frontier for modern ecology. The concept of ecological dynamic regime (EDR) emerged to emphasize the dynamic property of steady states in nature and refers to the fluctuations of ecosystems around some trend or average. Identifying and characterizing EDRs is of utmost importance in the current context of global change since they form the reference against which post-disturbance dynamics must be compared to assess ecological resilience. However, the implementation of EDRs in empirical science is still challenging given the high dimensionality and stochasticity of ecological data and the large volume of data required to distinguish stochastic dynamics from general and predictable dynamics. The era of big data and the recent advances in quantitative ecology and data science offer an opportunity to study dynamic regimes using empirical approaches from a new perspective. This paper presents a novel methodological framework to describe EDRs from a set of ecological trajectories defined by the temporal changes of state variables in a multidimensional state space. In our framework, we formally define EDRs and include analytical tools to identify, characterize, and compare EDRs based on their geometric characteristics. More specifically, we propose different ways to identify EDRs from empirical data, develop a new algorithm to identify representative trajectories summarizing the main dynamic patterns, propose a set of metrics to describe the internal distribution of ecological trajectories, and define a dissimilarity index to compare two or more dynamic regimes based on their shape and position in the state space. We used artificial data to illustrate the different elements of our framework and applied our analyses to real data, using permanent sampling plots of Canadian boreal forests as an example. Overall, our framework contributes to filling the gap between theoretical and empirical ecology by providing robust analytical tools to assess ecological resilience and study ecosystem dynamics from a multidimensional perspective and considering the variability of natural systems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42472219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rarefaction and extrapolation with beta diversity under a framework of Hill numbers: The iNEXT.beta3D standardization 希尔数框架下beta多样性的稀疏和外推:iNEXT。beta3D标准化
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-07-20 DOI: 10.1002/ecm.1588
Anne Chao, Simon Thorn, Chun-Huo Chiu, Faye Moyes, Kai-Hsiang Hu, Robin L. Chazdon, Jessie Wu, Luiz Fernando S. Magnago, Maria Dornelas, David Zelený, Robert K. Colwell, Anne E. Magurran

Based on sampling data, we propose a rigorous standardization method to measure and compare beta diversity across datasets. Here beta diversity, which quantifies the extent of among-assemblage differentiation, relies on Whittaker's original multiplicative decomposition scheme, but we use Hill numbers for any diversity order q ≥ 0. Richness-based beta diversity (q = 0) quantifies the extent of species identity shift, whereas abundance-based (q > 0) beta diversity also quantifies the extent of difference among assemblages in species abundance. We adopt and define the assumptions of a statistical sampling model as the foundation for our approach, treating sampling data as a representative sample taken from an assemblage. The approach makes a clear distinction between the theoretical assemblage level (unknown properties/parameters of the assemblage) and the sampling data level (empirical/observed statistics computed from data). At the assemblage level, beta diversity for N assemblages reflects the interacting effect of the species abundance distribution and spatial/temporal aggregation of individuals in the assemblage. Under independent sampling, observed beta (= gamma/alpha) diversity depends not only on among-assemblage differentiation but also on sampling effort/completeness, which in turn induces dependence of beta on alpha and gamma diversity. How to remove the dependence of richness-based beta diversity on its gamma component (species pool) has been intensely debated. Our approach is to standardize gamma and alpha based on sample coverage (an objective measure of sample completeness). For a single assemblage, the iNEXT method was developed, through interpolation (rarefaction) and extrapolation with Hill numbers, to standardize samples by sampling effort/completeness. Here we adapt the iNEXT standardization to alpha and gamma diversity, that is, alpha and gamma diversity are both assessed at the same level of sample coverage, to formulate standardized, coverage-based beta diversity. This extension of iNEXT to beta diversity required the development of novel concepts and theories, including a formal proof and simulation-based demonstration that the resulting standardized beta diversity removes the dependence of beta diversity on both gamma and alpha values, and thus reflects the pure among-assemblage differentiation. The proposed standardization is illustrated with spatial, temporal, and spatiotemporal datasets, while the freeware iNEXT.beta3D facilitates all computations and graphics.

基于采样数据,我们提出了一种严格的标准化方法来测量和比较数据集之间的beta多样性。这里,量化组合间分化程度的beta多样性依赖于Whittaker的原始乘法分解方案,但对于任何多样性阶q≥0,我们使用Hill数。基于丰富度的beta多样性(q = 0)量化了物种身份转移的程度,而基于丰度的beta多样性(q > 0)也量化了物种丰度组合之间的差异程度。我们采用并定义统计抽样模型的假设作为我们方法的基础,将抽样数据视为从组合中提取的代表性样本。该方法明确区分了理论组合水平(组合的未知属性/参数)和抽样数据水平(从数据中计算的经验/观察统计数据)。在组合水平上,N个组合的beta多样性反映了物种丰度分布与组合中个体时空聚集的交互作用。在独立采样下,观察到的beta (= gamma/alpha)多样性不仅取决于组合间的分化,还取决于采样努力/完整性,这反过来又导致了beta对alpha和gamma多样性的依赖。如何消除基于丰富度的β多样性对其γ成分(物种库)的依赖一直是争论的焦点。我们的方法是基于样本覆盖率(样本完整性的客观度量)来标准化gamma和alpha。对于单个组合,通过希尔数的插值(稀疏)和外推,开发了iNEXT方法,通过采样努力/完整性来标准化样本。在这里,我们将iNEXT的标准化应用于alpha和gamma多样性,即在相同的样本覆盖水平上评估alpha和gamma多样性,以制定标准化的、基于覆盖率的beta多样性。将iNEXT扩展到beta多样性需要开发新的概念和理论,包括正式的证明和基于模拟的演示,由此产生的标准化beta多样性消除了beta多样性对gamma和alpha值的依赖,从而反映了纯粹的组合间差异。提出的标准化是用空间、时间和时空数据集来说明的,而免费软件iNEXT。beta3D简化了所有的计算和图形。
{"title":"Rarefaction and extrapolation with beta diversity under a framework of Hill numbers: The iNEXT.beta3D standardization","authors":"Anne Chao,&nbsp;Simon Thorn,&nbsp;Chun-Huo Chiu,&nbsp;Faye Moyes,&nbsp;Kai-Hsiang Hu,&nbsp;Robin L. Chazdon,&nbsp;Jessie Wu,&nbsp;Luiz Fernando S. Magnago,&nbsp;Maria Dornelas,&nbsp;David Zelený,&nbsp;Robert K. Colwell,&nbsp;Anne E. Magurran","doi":"10.1002/ecm.1588","DOIUrl":"10.1002/ecm.1588","url":null,"abstract":"<p>Based on sampling data, we propose a rigorous standardization method to measure and compare beta diversity across datasets. Here beta diversity, which quantifies the extent of among-assemblage differentiation, relies on Whittaker's original multiplicative decomposition scheme, but we use Hill numbers for any diversity order <i>q ≥</i> 0. Richness-based beta diversity (<i>q</i> = 0) quantifies the extent of species identity shift, whereas abundance-based (<i>q</i> &gt; 0) beta diversity also quantifies the extent of difference among assemblages in species abundance. We adopt and define the assumptions of a statistical sampling model as the foundation for our approach, treating sampling data as a representative sample taken from an assemblage. The approach makes a clear distinction between the theoretical assemblage level (unknown properties/parameters of the assemblage) and the sampling data level (empirical/observed statistics computed from data). At the assemblage level, beta diversity for <i>N</i> assemblages reflects the interacting effect of the species abundance distribution and spatial/temporal aggregation of individuals in the assemblage. Under independent sampling, observed beta (= gamma/alpha) diversity depends not only on among-assemblage differentiation but also on sampling effort/completeness, which in turn induces dependence of beta on alpha and gamma diversity. How to remove the dependence of richness-based beta diversity on its gamma component (species pool) has been intensely debated. Our approach is to standardize gamma and alpha based on sample coverage (an objective measure of sample completeness). For a single assemblage, the iNEXT method was developed, through interpolation (rarefaction) and extrapolation with Hill numbers, to standardize samples by sampling effort/completeness. Here we adapt the iNEXT standardization to alpha and gamma diversity, that is, alpha and gamma diversity are both assessed at the same level of sample coverage, to formulate standardized, coverage-based beta diversity. This extension of iNEXT to beta diversity required the development of novel concepts and theories, including a formal proof and simulation-based demonstration that the resulting standardized beta diversity removes the dependence of beta diversity on both gamma and alpha values, and thus reflects the pure among-assemblage differentiation. The proposed standardization is illustrated with spatial, temporal, and spatiotemporal datasets, while the freeware iNEXT.beta3D facilitates all computations and graphics.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51638048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Drivers of contrasting boreal understory vegetation in coniferous and broadleaf deciduous alternative states 针叶树和阔叶落叶替代州北方林下植被对比的驱动因素
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-06-12 DOI: 10.1002/ecm.1587
Juanita C. Rodríguez-Rodríguez, Nicole J. Fenton, Steven W. Kembel, Evick Mestre, Mélanie Jean, Yves Bergeron

Alternative states defined by tree-canopy dominance result in different ecosystem functioning and shape habitat conditions for the understory vegetation. One example in the boreal forest is the alternation between broadleaf deciduous and coniferous forests. Disturbances related to natural fires and human land uses have produced changes in tree-canopy dominance in the boreal region where coniferous forests change to broadleaved forests, affecting understory community dynamics and their related ecosystem processes and functions. To analyze the factors driving changes in understory vegetation and the resistance of its vegetation to shifts between alternative states, we compared the effects of changes in the system between two contrasting boreal forest types (black spruce vs. trembling aspen) in adjacent stands with similar topoedaphic conditions. We performed a 5-year in situ experiment using alternative states as a theoretical framework including two approaches: (1) the ecosystem approach, manipulating environmental conditions of light, litter, and nutrients in each forest type to determine the main mechanisms associated with tree-canopy dominance that affect the diversity and composition of understory communities; and (2) the community approach, physically exchanging understory communities between alternative states, to determine their resistance under a new tree-canopy dominance through time, as well as the resilience of the forest understory after a small-scale disturbance. Results indicate that the understory vegetation of trembling aspen forests were resistant through time both after changes in local conditions in the ecosystem approach and in the new black spruce-dominated alternative state in the community approach. In contrast, mosses and ericaceous plants that typically dominate the forest floor of black spruce forests were negatively affected by the physical effect of broadleaf litter addition in our ecosystem approach and they were not resistant when transplanted to trembling aspen forests in the community approach, as they decreased in abundance and were invaded by aspen understory community species over time. The understory vegetation is a key forest ecosystem driver that can contribute to maintain the resilience of the boreal system and help to preserve their ecosystem services, which is a key aspect to consider in forest management faced with the effects of climate change.

由冠层优势度定义的不同状态导致了不同的生态系统功能,并形成了林下植被的生境条件。北方森林的一个例子是阔叶落叶林和针叶林的交替。在针叶林向阔叶林转变的北方地区,与自然火灾和人类土地利用有关的干扰造成了树冠优势的变化,影响了林下群落动态及其相关的生态系统过程和功能。为了分析林下植被变化的驱动因素及其对交替状态转换的抵抗力,我们在地形条件相似的相邻林分上比较了两种不同的北方森林类型(黑云杉和颤杨)对林下植被变化的影响。本文以不同状态为理论框架,开展了一项为期5年的原位实验,包括两种方法:(1)生态系统方法,通过对不同森林类型的光照、凋落物和养分等环境条件的调控,确定影响林下群落多样性和组成的树冠优势度的主要机制;(2)群落方法,通过对林下群落在不同状态间的物理交换,确定林下群落在新的树冠优势下随时间的抵抗力,以及林下群落在小规模扰动后的恢复力。结果表明,在生态系统方法中,颤杨林林下植被在局地条件变化后,在群落方法中,颤杨林林下植被在以新黑云杉为主的交替状态下都具有一定的抗性。相比之下,在我们的生态系统方法中,在黑云杉林地表占主导地位的苔藓和白垩系植物受到阔叶凋落物添加的物理效应的负面影响,当它们在群落方法中移植到颤杨林时,由于它们的丰度减少,并且随着时间的推移被白杨林下群落物种入侵,它们不具有抵抗力。林下植被是森林生态系统的关键驱动力,有助于维持北方系统的恢复力,并有助于保护其生态系统服务,这是面临气候变化影响的森林管理中需要考虑的一个关键方面。
{"title":"Drivers of contrasting boreal understory vegetation in coniferous and broadleaf deciduous alternative states","authors":"Juanita C. Rodríguez-Rodríguez,&nbsp;Nicole J. Fenton,&nbsp;Steven W. Kembel,&nbsp;Evick Mestre,&nbsp;Mélanie Jean,&nbsp;Yves Bergeron","doi":"10.1002/ecm.1587","DOIUrl":"10.1002/ecm.1587","url":null,"abstract":"<p>Alternative states defined by tree-canopy dominance result in different ecosystem functioning and shape habitat conditions for the understory vegetation. One example in the boreal forest is the alternation between broadleaf deciduous and coniferous forests. Disturbances related to natural fires and human land uses have produced changes in tree-canopy dominance in the boreal region where coniferous forests change to broadleaved forests, affecting understory community dynamics and their related ecosystem processes and functions. To analyze the factors driving changes in understory vegetation and the resistance of its vegetation to shifts between alternative states, we compared the effects of changes in the system between two contrasting boreal forest types (black spruce vs. trembling aspen) in adjacent stands with similar topoedaphic conditions. We performed a 5-year in situ experiment using alternative states as a theoretical framework including two approaches: (1) the ecosystem approach, manipulating environmental conditions of light, litter, and nutrients in each forest type to determine the main mechanisms associated with tree-canopy dominance that affect the diversity and composition of understory communities; and (2) the community approach, physically exchanging understory communities between alternative states, to determine their resistance under a new tree-canopy dominance through time, as well as the resilience of the forest understory after a small-scale disturbance. Results indicate that the understory vegetation of trembling aspen forests were resistant through time both after changes in local conditions in the ecosystem approach and in the new black spruce-dominated alternative state in the community approach. In contrast, mosses and ericaceous plants that typically dominate the forest floor of black spruce forests were negatively affected by the physical effect of broadleaf litter addition in our ecosystem approach and they were not resistant when transplanted to trembling aspen forests in the community approach, as they decreased in abundance and were invaded by aspen understory community species over time. The understory vegetation is a key forest ecosystem driver that can contribute to maintain the resilience of the boreal system and help to preserve their ecosystem services, which is a key aspect to consider in forest management faced with the effects of climate change.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1587","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49025452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical drivers of cryptic biodiversity on coral reefs 珊瑚礁上隐秘生物多样性的等级驱动因素
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-06-10 DOI: 10.1002/ecm.1586
Kennedy Wolfe, Tania M. Kenyon, Amelia Desbiens, Kimberley de la Motte, Peter J. Mumby

Declines in habitat structural complexity have marked ecological outcomes, as currently observed in many of the world's ecosystems. Coral reefs have provided a model for such changes in marine ecosystems; still our understanding has been centered on corals and fishes at broad spatial scales when metazoan diversity on coral reefs is dominated by small cryptic taxa (herein: “cryptofauna”). Given the paucity of studies and high taxonomic complexity of the cryptofauna, both of which limit a priori hypotheses, we asked whether hierarchical structuring theory provides a compelling framework to impose order and quantify patterns. In general terms, we explored whether cryptic communities are sufficiently described by broad seascape parameters or limited by a set of processes operating at their distinctly nested microhabitat scale. To address this theory and gaps in knowledge for the cryptofauna, we characterized community structure in coral rubble, an eroded coral condition where biodiversity proliferates. Rubble was sampled along a depth and exposure gradient at Heron Island on the Great Barrier Reef, Australia, to parameterize environmental and morphological indicators of sessile taxa and motile cryptofauna communities. We used a hierarchical study framework from microhabitat to seascape scales, which were evaluated using nonstructured multivariate analyses and Bayesian structural equation modeling. While the nonstructured analyses showed the effects of seascape on the cryptobenthos and its community, this approach overlooked the finer hierarchical patterns in rubble ecology revealed only in the structured model. Seascape parameters (exposure and depth) influenced microhabitat complexity (i.e., rubble branchiness), which determined the cover of sessile organisms on rubble pieces, which shaped the motile cryptofauna community. Rubble is likely to be increasingly prevalent on coral reefs in the Anthropocene and is typically associated with low seascape-level complexity and reduced macrofaunal richness. Parallel with hierarchical structuring theory, we showed a similar response operating at the microhabitat scale whereby low rubble complexity (i.e., branchiness) reduced cryptobenthic structure, diversity and size spectra. In a future ocean, we expect there may be an initial increase in biodiversity and trophodynamic processes derived from branching rubble, but a delay in ecosystem-scale outcomes if coral, and thus rubble, generation and complexity is not sustained.

正如目前在世界上许多生态系统中所观察到的那样,栖息地结构复杂性的下降已经带来了显著的生态后果。珊瑚礁为海洋生态系统的这种变化提供了一个模型;然而,我们的认识仍然集中在广泛的空间尺度上的珊瑚和鱼类,而珊瑚礁上的后生动物多样性主要是小型的隐动物群(此处称为“隐动物群”)。考虑到研究的缺乏和隐动物群分类的高度复杂性,这两者都限制了先验假设,我们问层次结构理论是否提供了一个令人信服的框架来强加秩序和量化模式。总的来说,我们探讨了隐群落是否被广泛的海景参数充分描述,还是受到在其独特的嵌套微生境尺度上运行的一系列过程的限制。为了解决这一理论和隐动物群知识的空白,我们描述了珊瑚碎石中的群落结构,这是一种生物多样性激增的侵蚀珊瑚条件。在澳大利亚大堡礁Heron岛沿深度和暴露梯度取样碎石,以参数化无根分类群和活动隐动物群群落的环境和形态指标。我们采用了从微生境到海景尺度的分层研究框架,利用非结构化多变量分析和贝叶斯结构方程模型对其进行了评估。虽然非结构化分析显示了海景对隐底生物及其群落的影响,但这种方法忽略了只有在结构化模型中才能揭示的碎石生态中更精细的分层模式。海景参数(暴露度和深度)影响微生境复杂性(即碎石枝度),从而决定了碎石片上无根生物的覆盖,从而形成了活动隐动物群。在人类世,碎石可能在珊瑚礁上越来越普遍,并且通常与海平面复杂性低和大型动物丰富度减少有关。与层次结构理论平行,我们在微生境尺度上显示了类似的响应,即低碎石复杂性(即分枝)降低了隐底生物的结构、多样性和尺寸谱。在未来的海洋中,我们预计可能会有最初的生物多样性和滋养动力学过程的增加,但如果珊瑚和碎石的产生和复杂性不能持续,生态系统规模的结果可能会延迟。
{"title":"Hierarchical drivers of cryptic biodiversity on coral reefs","authors":"Kennedy Wolfe,&nbsp;Tania M. Kenyon,&nbsp;Amelia Desbiens,&nbsp;Kimberley de la Motte,&nbsp;Peter J. Mumby","doi":"10.1002/ecm.1586","DOIUrl":"10.1002/ecm.1586","url":null,"abstract":"<p>Declines in habitat structural complexity have marked ecological outcomes, as currently observed in many of the world's ecosystems. Coral reefs have provided a model for such changes in marine ecosystems; still our understanding has been centered on corals and fishes at broad spatial scales when metazoan diversity on coral reefs is dominated by small cryptic taxa (herein: “cryptofauna”). Given the paucity of studies and high taxonomic complexity of the cryptofauna, both of which limit a priori hypotheses, we asked whether hierarchical structuring theory provides a compelling framework to impose order and quantify patterns. In general terms, we explored whether cryptic communities are sufficiently described by broad seascape parameters or limited by a set of processes operating at their distinctly nested microhabitat scale. To address this theory and gaps in knowledge for the cryptofauna, we characterized community structure in coral rubble, an eroded coral condition where biodiversity proliferates. Rubble was sampled along a depth and exposure gradient at Heron Island on the Great Barrier Reef, Australia, to parameterize environmental and morphological indicators of sessile taxa and motile cryptofauna communities. We used a hierarchical study framework from microhabitat to seascape scales, which were evaluated using nonstructured multivariate analyses and Bayesian structural equation modeling. While the nonstructured analyses showed the effects of seascape on the cryptobenthos and its community, this approach overlooked the finer hierarchical patterns in rubble ecology revealed only in the structured model. Seascape parameters (exposure and depth) influenced microhabitat complexity (i.e., rubble branchiness), which determined the cover of sessile organisms on rubble pieces, which shaped the motile cryptofauna community. Rubble is likely to be increasingly prevalent on coral reefs in the Anthropocene and is typically associated with low seascape-level complexity and reduced macrofaunal richness. Parallel with hierarchical structuring theory, we showed a similar response operating at the microhabitat scale whereby low rubble complexity (i.e., branchiness) reduced cryptobenthic structure, diversity and size spectra. In a future ocean, we expect there may be an initial increase in biodiversity and trophodynamic processes derived from branching rubble, but a delay in ecosystem-scale outcomes if coral, and thus rubble, generation and complexity is not sustained.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46953587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Reexamining the storage effect: Why temporal variation in abiotic factors seems unlikely to cause coexistence 重新审视储存效应:为什么非生物因素的时间变化似乎不太可能导致共存
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-06-02 DOI: 10.1002/ecm.1585
Simon Maccracken Stump, David A. Vasseur

The temporal storage effect—that species coexist by partitioning abiotic niches that vary in time—is thought to be an important explanation for how species coexist. However, empirical studies that measure multiple mechanisms often find the storage effect is weak. We believe this mismatch is because of a shortcoming of theoretical models used to study the storage effect: that while the storage effect is described as having just three requirements (partitioning of temporal variation, buffered population growth, and a covariance between environment and density-dependence), models used to study the storage effect make four assumptions, which are mathematically subtle but biologically important. In this paper, we examine those assumptions. First, models assume that environmental variation leads to a rapid impact on density-dependence. We find that delays in density-dependence (including delays caused by competition between cohorts) weaken the storage effect. Second, models assume that intraspecific competition is almost identical to interspecific competition. We find that unless resource or predator partitioning are virtually absent, then variation-independent mechanisms will overshadow the benefits of the storage effect. Third, models assume even though there is vast variation in the environment, species are equally adapted on average (i.e., zero fitness-differences). We show that fitness differences are particularly problematic in the storage effect because specializing on temporally rare niches is far less effective than specializing on other types of rare niches. Finally, models assume that stochastic extinctions can be ignored, and invader growth can determine coexistence. We show that storage effects tend to reduce mean persistence times, even if invader growth rates are positive. These results suggest that the assumptions needed for the storage effect are strict: if the first or second assumption is relaxed, it will greatly weaken the stabilizing mechanism; if the third or fourth assumption is relaxed, it will create a diversity-destroying effect that may undermine coexistence. We examine three real-world communities—annual plants, tropical forests, and iguanid lizards—and find that empirical studies suggest that all three communities violate multiple assumptions. This suggests that the temporal storage effect is probably not an important explanation for species diversity in most systems.

时间储存效应——物种通过分配随时间变化的非生物生态位而共存——被认为是物种如何共存的重要解释。然而,衡量多种机制的实证研究往往发现储存效应较弱。我们认为这种不匹配是由于用于研究存储效应的理论模型的缺点:虽然存储效应被描述为只有三个要求(时间变化的划分,缓冲的人口增长,以及环境和密度依赖之间的协方差),但用于研究存储效应的模型提出了四个假设,这些假设在数学上很微妙,但在生物学上很重要。在本文中,我们检验了这些假设。首先,模型假设环境变化会导致对密度依赖性的快速影响。我们发现密度依赖的延迟(包括队列之间竞争引起的延迟)削弱了存储效果。其次,模型假设种内竞争与种间竞争几乎相同。我们发现,除非资源或捕食者划分实际上不存在,否则变化无关的机制将掩盖存储效应的好处。第三,模型假设,即使环境有很大的变化,物种平均都是一样适应的(即零适应差异)。我们发现适应度差异在储存效应中尤其成问题,因为专门化暂时稀有的生态位远不如专门化其他类型的稀有生态位有效。最后,模型假设随机灭绝可以忽略,而入侵者的增长可以决定共存。我们发现,即使入侵者的增长率为正,储存效应也倾向于减少平均持续时间。这些结果表明,储水效应所需的假设是严格的:如果放松第一或第二假设,将大大削弱稳定机制;如果放松第三或第四个假设,它将产生一种破坏多样性的效果,可能破坏共存。我们考察了三个现实世界的群落——一年生植物、热带森林和鬣蜥——并发现实证研究表明,这三个群落都违反了多个假设。这表明,在大多数系统中,时间储存效应可能不是物种多样性的重要解释。
{"title":"Reexamining the storage effect: Why temporal variation in abiotic factors seems unlikely to cause coexistence","authors":"Simon Maccracken Stump,&nbsp;David A. Vasseur","doi":"10.1002/ecm.1585","DOIUrl":"10.1002/ecm.1585","url":null,"abstract":"<p>The temporal storage effect—that species coexist by partitioning abiotic niches that vary in time—is thought to be an important explanation for how species coexist. However, empirical studies that measure multiple mechanisms often find the storage effect is weak. We believe this mismatch is because of a shortcoming of theoretical models used to study the storage effect: that while the storage effect is described as having just three requirements (partitioning of temporal variation, buffered population growth, and a covariance between environment and density-dependence), models used to study the storage effect make four assumptions, which are mathematically subtle but biologically important. In this paper, we examine those assumptions. First, models assume that environmental variation leads to a rapid impact on density-dependence. We find that delays in density-dependence (including delays caused by competition between cohorts) weaken the storage effect. Second, models assume that intraspecific competition is almost identical to interspecific competition. We find that unless resource or predator partitioning are virtually absent, then variation-independent mechanisms will overshadow the benefits of the storage effect. Third, models assume even though there is vast variation in the environment, species are equally adapted on average (i.e., zero fitness-differences). We show that fitness differences are particularly problematic in the storage effect because specializing on temporally rare niches is far less effective than specializing on other types of rare niches. Finally, models assume that stochastic extinctions can be ignored, and invader growth can determine coexistence. We show that storage effects tend to reduce mean persistence times, even if invader growth rates are positive. These results suggest that the assumptions needed for the storage effect are strict: if the first or second assumption is relaxed, it will greatly weaken the stabilizing mechanism; if the third or fourth assumption is relaxed, it will create a diversity-destroying effect that may undermine coexistence. We examine three real-world communities—annual plants, tropical forests, and iguanid lizards—and find that empirical studies suggest that all three communities violate multiple assumptions. This suggests that the temporal storage effect is probably not an important explanation for species diversity in most systems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43334221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Assessing risk for butterflies in the context of climate change, demographic uncertainty, and heterogeneous data sources 在气候变化、人口不确定性和异质数据来源的背景下评估蝴蝶的风险
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-05-19 DOI: 10.1002/ecm.1584
Matthew L. Forister, Eliza M. Grames, Christopher A. Halsch, Kevin J. Burls, Cas F. Carroll, Katherine L. Bell, Joshua P. Jahner, Taylor A. Bradford, Jing Zhang, Qian Cong, Nick V. Grishin, Jeffrey Glassberg, Arthur M. Shapiro, Thomas V. Riecke

Ongoing declines in insect populations have led to substantial concern and calls for conservation action. However, even for relatively well studied groups, like butterflies, information relevant to species-specific status and risk is scattered across field guides, the scientific literature, and agency reports. Consequently, attention and resources have been spent on a minuscule fraction of insect diversity, including a few well studied butterflies. Here we bring together heterogeneous sources of information for 396 butterfly species to provide the first regional assessment of butterflies for the 11 western US states. For 184 species, we use monitoring data to characterize historical and projected trends in population abundance. For another 212 species (for which monitoring data are not available, but other types of information can be collected), we use exposure to climate change, development, geographic range, number of host plants, and other factors to rank species for conservation concern. A phylogenetic signal is apparent, with concentrations of declining and at-risk species in the families Lycaenidae and Hesperiidae. A geographic bias exists in that many species that lack monitoring data occur in the more southern states where we expect that impacts of warming and drying trends will be most severe. Legal protection is rare among the taxa with the highest risk values: of the top 100 species, one is listed as threatened under the US Endangered Species Act and one is a candidate for listing. Among the many taxa not currently protected, we highlight a short list of species in decline, including Vanessa annabella, Thorybes mexicanus, Euchloe ausonides, and Pholisora catullus. Notably, many of these species have broad geographic ranges, which perhaps highlights a new era of insect conservation in which small or fragmented ranges will not be the only red flags that attract conservation attention.

昆虫数量的持续下降引起了人们的极大关注,并呼吁采取保护行动。然而,即使对于蝴蝶等研究相对完善的群体,与物种特定状态和风险相关的信息也分散在实地指南、科学文献和机构报告中。因此,人们的注意力和资源都花在了昆虫多样性的一小部分上,包括一些经过充分研究的蝴蝶。在这里,我们汇集了396种蝴蝶的异质信息来源,为美国西部11个州的蝴蝶提供了首次区域评估。对于184个物种,我们使用监测数据来描述种群丰度的历史和预测趋势。对于另外212个物种(无法获得监测数据,但可以收集其他类型的信息),我们利用气候变化、发育、地理范围、寄主植物数量和其他因素对物种进行保护排名。系统发育信号是明显的,石首鱼科和灰蝶科的物种数量减少,风险较高。地理上存在偏见,因为许多缺乏监测数据的物种出现在更南部的州,我们预计那里的变暖和干旱趋势的影响将最为严重。在风险值最高的分类群中,法律保护是罕见的:在前100个物种中,一个根据《美国濒危物种法》被列为受威胁物种,一个是候选物种。在目前未受保护的许多分类群中,我们重点介绍了一个正在减少的物种的短名单,包括Vanessa annabella、Thorybes mexicanus、Euchloe ausonides和Pholisora catullus。值得注意的是,这些物种中的许多具有广阔的地理范围,这可能突显了昆虫保护的新时代,在这个时代,小范围或分散的范围将不是吸引保护关注的唯一危险信号。
{"title":"Assessing risk for butterflies in the context of climate change, demographic uncertainty, and heterogeneous data sources","authors":"Matthew L. Forister,&nbsp;Eliza M. Grames,&nbsp;Christopher A. Halsch,&nbsp;Kevin J. Burls,&nbsp;Cas F. Carroll,&nbsp;Katherine L. Bell,&nbsp;Joshua P. Jahner,&nbsp;Taylor A. Bradford,&nbsp;Jing Zhang,&nbsp;Qian Cong,&nbsp;Nick V. Grishin,&nbsp;Jeffrey Glassberg,&nbsp;Arthur M. Shapiro,&nbsp;Thomas V. Riecke","doi":"10.1002/ecm.1584","DOIUrl":"https://doi.org/10.1002/ecm.1584","url":null,"abstract":"<p>Ongoing declines in insect populations have led to substantial concern and calls for conservation action. However, even for relatively well studied groups, like butterflies, information relevant to species-specific status and risk is scattered across field guides, the scientific literature, and agency reports. Consequently, attention and resources have been spent on a minuscule fraction of insect diversity, including a few well studied butterflies. Here we bring together heterogeneous sources of information for 396 butterfly species to provide the first regional assessment of butterflies for the 11 western US states. For 184 species, we use monitoring data to characterize historical and projected trends in population abundance. For another 212 species (for which monitoring data are not available, but other types of information can be collected), we use exposure to climate change, development, geographic range, number of host plants, and other factors to rank species for conservation concern. A phylogenetic signal is apparent, with concentrations of declining and at-risk species in the families Lycaenidae and Hesperiidae. A geographic bias exists in that many species that lack monitoring data occur in the more southern states where we expect that impacts of warming and drying trends will be most severe. Legal protection is rare among the taxa with the highest risk values: of the top 100 species, one is listed as threatened under the US Endangered Species Act and one is a candidate for listing. Among the many taxa not currently protected, we highlight a short list of species in decline, including <i>Vanessa annabella</i>, <i>Thorybes mexicanus</i>, <i>Euchloe ausonides</i>, and <i>Pholisora catullus</i>. Notably, many of these species have broad geographic ranges, which perhaps highlights a new era of insect conservation in which small or fragmented ranges will not be the only red flags that attract conservation attention.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50138042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demography and dispersal at a grass-shrub ecotone: A spatial integral projection model for woody plant encroachment 草灌丛交错带的人口分布与扩散:木本植物入侵的空间积分投影模型
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-04-18 DOI: 10.1002/ecm.1574
Trevor Drees, Brad M. Ochocki, Scott L. Collins, Tom E. X. Miller

The encroachment of woody plants into grasslands is a global phenomenon with implications for biodiversity and ecosystem function. Understanding and predicting the pace of expansion and the underlying processes that control it are key challenges in the study and management of woody encroachment. Theory from spatial population biology predicts that the occurrence and speed of expansion should depend sensitively on the nature of conspecific density dependence. If fitness is maximized at the low-density encroachment edge, then shrub expansion should be “pulled” forward. However, encroaching shrubs have been shown to exhibit positive feedbacks, whereby shrub establishment modifies the environment in ways that facilitate further shrub recruitment and survival. In this case there may be a fitness cost to shrubs at low density causing expansion to be “pushed” from behind the leading edge. We studied the spatial dynamics of creosotebush (Larrea tridentata), which has a history of encroachment into Chihuahuan Desert grasslands over the past century. We used demographic data from observational censuses and seedling transplant experiments to test the strength and direction of density dependence in shrub fitness along a gradient of shrub density at the grass–shrub ecotone. We also used seed-drop experiments and wind data to construct a mechanistic seed-dispersal kernel, then connected demography and dispersal data within a spatial integral projection model (SIPM) to predict the dynamics of shrub expansion. Contrary to expectations based on potential for positive feedbacks, the shrub encroachment wave is “pulled” by maximum fitness at the low-density front. However, the predicted pace of expansion was strikingly slow (ca. 8 cm/year), and this prediction was supported by independent resurveys of the ecotone showing little to no change in the spatial extent of shrub cover over 12 years. Encroachment speed was acutely sensitive to seedling recruitment, suggesting that this population may be primed for pulses of expansion under conditions that are favorable for recruitment. Our integration of observations, experiments, and modeling reveals not only that this ecotone is effectively stalled under current conditions but also why that is so and how that may change as the environment changes.

木本植物对草原的侵蚀是一个全球性的现象,对生物多样性和生态系统功能具有重要影响。了解和预测森林扩张的速度以及控制扩张的潜在过程是研究和管理森林入侵的关键挑战。空间种群生物学理论预测,种群扩张的发生和速度应敏感地取决于同比密度依赖的性质。如果适应度在低密度侵占边缘最大,则应将灌木扩张“向前拉”。然而,灌木的入侵表现出积极的反馈,即灌木的建立改变了环境,促进了进一步的灌木招募和生存。在这种情况下,低密度的灌木可能会有适应性成本,导致扩张从前缘后面被“推”出去。研究了近百年来入侵奇瓦瓦荒漠草原的木榴灌木(Larrea tridentata)的空间动态特征。利用观察性普查和幼苗移栽试验的人口统计学数据,研究了草-灌木交错带灌木适宜度在密度梯度上的密度依赖强度和方向。利用种子落实验和风数据构建了种子扩散机制核,并利用空间积分投影模型(SIPM)将人口统计学和传播数据联系起来,预测了灌木扩张的动态。与基于正反馈潜力的预期相反,灌木入侵波被低密度前沿的最大适应度“拉动”。然而,预测的扩张速度非常缓慢(约8 cm/年),这一预测得到了过渡带独立调查的支持,调查显示12年来灌木覆盖的空间范围几乎没有变化。侵吞速度对苗期招募极为敏感,表明该种群可能在有利于苗期招募的条件下准备了扩张的脉冲。我们将观察、实验和建模结合起来,不仅揭示了这种过渡带在当前条件下实际上是停滞不前的,而且还揭示了为什么会这样,以及随着环境的变化,这种情况会如何变化。
{"title":"Demography and dispersal at a grass-shrub ecotone: A spatial integral projection model for woody plant encroachment","authors":"Trevor Drees,&nbsp;Brad M. Ochocki,&nbsp;Scott L. Collins,&nbsp;Tom E. X. Miller","doi":"10.1002/ecm.1574","DOIUrl":"10.1002/ecm.1574","url":null,"abstract":"<p>The encroachment of woody plants into grasslands is a global phenomenon with implications for biodiversity and ecosystem function. Understanding and predicting the pace of expansion and the underlying processes that control it are key challenges in the study and management of woody encroachment. Theory from spatial population biology predicts that the occurrence and speed of expansion should depend sensitively on the nature of conspecific density dependence. If fitness is maximized at the low-density encroachment edge, then shrub expansion should be “pulled” forward. However, encroaching shrubs have been shown to exhibit positive feedbacks, whereby shrub establishment modifies the environment in ways that facilitate further shrub recruitment and survival. In this case there may be a fitness cost to shrubs at low density causing expansion to be “pushed” from behind the leading edge. We studied the spatial dynamics of creosotebush (<i>Larrea tridentata</i>), which has a history of encroachment into Chihuahuan Desert grasslands over the past century. We used demographic data from observational censuses and seedling transplant experiments to test the strength and direction of density dependence in shrub fitness along a gradient of shrub density at the grass–shrub ecotone. We also used seed-drop experiments and wind data to construct a mechanistic seed-dispersal kernel, then connected demography and dispersal data within a spatial integral projection model (SIPM) to predict the dynamics of shrub expansion. Contrary to expectations based on potential for positive feedbacks, the shrub encroachment wave is “pulled” by maximum fitness at the low-density front. However, the predicted pace of expansion was strikingly slow (ca. 8 cm/year), and this prediction was supported by independent resurveys of the ecotone showing little to no change in the spatial extent of shrub cover over 12 years. Encroachment speed was acutely sensitive to seedling recruitment, suggesting that this population may be primed for pulses of expansion under conditions that are favorable for recruitment. Our integration of observations, experiments, and modeling reveals not only that this ecotone is effectively stalled under current conditions but also why that is so and how that may change as the environment changes.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46849079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using mechanistic insights to predict the climate-induced expansion of a key aquatic predator 利用机制见解预测气候引起的一种关键水生捕食者的扩张
IF 6.1 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2023-04-16 DOI: 10.1002/ecm.1575
Mark C. Urban, Christopher P. Nadeau, Sean T. Giery

Ameliorating the impacts of climate change on communities requires understanding the mechanisms of change and applying them to predict future responses. One way to prioritize efforts is to identify biotic multipliers, which are species that are sensitive to climate change and disproportionately alter communities. We first evaluate the mechanisms underlying the occupancy dynamics of marbled salamanders, a key predator in temporary ponds in the eastern United States We use long-term data to evaluate four mechanistic hypotheses proposed to explain occupancy patterns, including autumn flooding, overwintering predation, freezing, and winterkill from oxygen depletion. Results suggest that winterkill and fall flooding best explain marbled salamander occupancy patterns. A field introduction experiment supports the importance of winterkill via hypoxia rather than freezing in determining overwinter survival and rejects dispersal limitation as a mechanism preventing establishment. We build climate-based correlative models that describe salamander occupancy across ponds and years at two latitudinally divergent sites, a southern and middle site, with and without field-collected habitat characteristics. Correlative models with climate and habitat variation described occupancy patterns better than climate-only models for each site, but poorly predicted occupancy patterns at the site not used for model development. We next built hybrid mechanistic metapopulation occupancy models that incorporated flooding and winterkill mechanisms. Although hybrid models did not describe observed site-specific occupancy dynamics better than correlative models, they better predicted the other site's dynamics, revealing a performance trade-off between model types. Under future climate scenarios, models predict an increased occupancy of marbled salamanders, especially at the middle site, and expansion at a northern site beyond the northern range boundary. Evidence for the climate sensitivity of marbled salamanders combined with their disproportionate ecological impacts suggests that they might act as biotic multipliers of climate change in temporary ponds. More generally, we predict that top aquatic vertebrate predators will expand into temperate-boreal lakes as climate change reduces winterkill worldwide. Predaceous species with life histories sensitive to winter temperatures provide good candidates for identifying additional biotic multipliers. Building models that include biological mechanisms for key species such as biotic multipliers could better predict broad changes in communities and design effective conservation actions.

减轻气候变化对社区的影响需要了解变化的机制,并将其应用于预测未来的反应。确定工作重点的一种方法是确定生物增殖器,这些物种对气候变化敏感,对群落的影响不成比例。我们首先评估了美国东部临时池塘中主要捕食者——石纹蝾螈占据动态的机制。我们使用长期数据评估了四种解释占据模式的机制假设,包括秋季洪水、越冬捕食、冻结和缺氧致冬杀。结果表明,冬杀和秋季洪水最能解释大理石纹蝾螈的占据模式。一项野外引种试验支持了通过缺氧而不是冰冻来决定越冬存活的重要性,并否定了将扩散限制作为阻止成虫的机制。我们建立了基于气候的相关模型,描述了两个纬度不同的地点(南部和中部)的蝾螈在池塘和年份上的占用情况,有和没有实地收集的栖息地特征。考虑气候和生境变化的相关模型比仅考虑气候的模型更能描述每个样地的占用模式,但对未用于模型开发的样地的占用模式预测较差。接下来,我们建立了包含洪水和冬杀机制的混合机制元种群占用模型。虽然混合模型不能比相关模型更好地描述观测到的特定地点的占用动态,但它们能更好地预测其他地点的动态,揭示了模型类型之间的性能权衡。在未来的气候情景下,模型预测大理石纹蝾螈的占用会增加,特别是在中部地区,并在北部地区扩展到北部范围边界以外的北部地区。大理石纹蝾螈对气候敏感的证据,加上它们不成比例的生态影响,表明它们可能在临时池塘中充当气候变化的生物倍增器。更普遍地说,我们预测,随着气候变化在全球范围内减少冬杀,顶级水生脊椎动物捕食者将扩展到温带北方湖泊。具有对冬季温度敏感的生活史的食肉物种为鉴定额外的生物倍增器提供了良好的候选者。建立包括生物倍增器等关键物种的生物机制的模型可以更好地预测群落的广泛变化并设计有效的保护行动。
{"title":"Using mechanistic insights to predict the climate-induced expansion of a key aquatic predator","authors":"Mark C. Urban,&nbsp;Christopher P. Nadeau,&nbsp;Sean T. Giery","doi":"10.1002/ecm.1575","DOIUrl":"10.1002/ecm.1575","url":null,"abstract":"<p>Ameliorating the impacts of climate change on communities requires understanding the mechanisms of change and applying them to predict future responses. One way to prioritize efforts is to identify biotic multipliers, which are species that are sensitive to climate change and disproportionately alter communities. We first evaluate the mechanisms underlying the occupancy dynamics of marbled salamanders, a key predator in temporary ponds in the eastern United States We use long-term data to evaluate four mechanistic hypotheses proposed to explain occupancy patterns, including autumn flooding, overwintering predation, freezing, and winterkill from oxygen depletion. Results suggest that winterkill and fall flooding best explain marbled salamander occupancy patterns. A field introduction experiment supports the importance of winterkill via hypoxia rather than freezing in determining overwinter survival and rejects dispersal limitation as a mechanism preventing establishment. We build climate-based correlative models that describe salamander occupancy across ponds and years at two latitudinally divergent sites, a southern and middle site, with and without field-collected habitat characteristics. Correlative models with climate and habitat variation described occupancy patterns better than climate-only models for each site, but poorly predicted occupancy patterns at the site not used for model development. We next built hybrid mechanistic metapopulation occupancy models that incorporated flooding and winterkill mechanisms. Although hybrid models did not describe observed site-specific occupancy dynamics better than correlative models, they better predicted the other site's dynamics, revealing a performance trade-off between model types. Under future climate scenarios, models predict an increased occupancy of marbled salamanders, especially at the middle site, and expansion at a northern site beyond the northern range boundary. Evidence for the climate sensitivity of marbled salamanders combined with their disproportionate ecological impacts suggests that they might act as biotic multipliers of climate change in temporary ponds. More generally, we predict that top aquatic vertebrate predators will expand into temperate-boreal lakes as climate change reduces winterkill worldwide. Predaceous species with life histories sensitive to winter temperatures provide good candidates for identifying additional biotic multipliers. Building models that include biological mechanisms for key species such as biotic multipliers could better predict broad changes in communities and design effective conservation actions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 3","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48623249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Ecological Monographs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1