{"title":"PhaseMax: Stable guarantees from noisy sub-Gaussian measurements","authors":"Huiping Li, Song Li, Y. Xia","doi":"10.1142/S0219530519400049","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the noisy phase retrieval problem which occurs in many different areas of science and physics. The PhaseMax algorithm is an efficient convex method to tackle with phase retrieval problem. On the basis of this algorithm, we propose two kinds of extended formulations of the PhaseMax algorithm, namely, PhaseMax with bounded and non-negative noise and PhaseMax with outliers to deal with the phase retrieval problem under different noise corruptions. Then we prove that these extended algorithms can stably recover real signals from independent sub-Gaussian measurements under optimal sample complexity. Specially, such results remain valid in noiseless case. As we can see, these results guarantee that a broad range of random measurements such as Bernoulli measurements with erasures can be applied to reconstruct the original signals by these extended PhaseMax algorithms. Finally, we demonstrate the effectiveness of our extended PhaseMax algorithm through numerical simulations. We find that with the same initialization, extended PhaseMax algorithm outperforms Truncated Wirtinger Flow method, and recovers the signal with corrupted measurements robustly.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0219530519400049","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219530519400049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we consider the noisy phase retrieval problem which occurs in many different areas of science and physics. The PhaseMax algorithm is an efficient convex method to tackle with phase retrieval problem. On the basis of this algorithm, we propose two kinds of extended formulations of the PhaseMax algorithm, namely, PhaseMax with bounded and non-negative noise and PhaseMax with outliers to deal with the phase retrieval problem under different noise corruptions. Then we prove that these extended algorithms can stably recover real signals from independent sub-Gaussian measurements under optimal sample complexity. Specially, such results remain valid in noiseless case. As we can see, these results guarantee that a broad range of random measurements such as Bernoulli measurements with erasures can be applied to reconstruct the original signals by these extended PhaseMax algorithms. Finally, we demonstrate the effectiveness of our extended PhaseMax algorithm through numerical simulations. We find that with the same initialization, extended PhaseMax algorithm outperforms Truncated Wirtinger Flow method, and recovers the signal with corrupted measurements robustly.
期刊介绍:
Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.