{"title":"Data Acquisition System for a Distributed Smartphone Cosmic Ray Observatory","authors":"Jeffrey R. Swaney, C. Shimmin, D. Whiteson","doi":"10.1142/s2251171721500161","DOIUrl":null,"url":null,"abstract":"A scientific instrument comprised of a global network of millions of independent, connected, remote devices presents unique data acquisition challenges. We describe the software design of a mobile application which collects data from smartphone cameras without overburdening the phone's CPU or battery. The deployed software automatically calibrates to heterogeneous hardware targets to improve the quality and manage the rate of data transfer, and connects to a cloud-based data acquisition system which can manage and refine the operation of the network.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2251171721500161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
A scientific instrument comprised of a global network of millions of independent, connected, remote devices presents unique data acquisition challenges. We describe the software design of a mobile application which collects data from smartphone cameras without overburdening the phone's CPU or battery. The deployed software automatically calibrates to heterogeneous hardware targets to improve the quality and manage the rate of data transfer, and connects to a cloud-based data acquisition system which can manage and refine the operation of the network.
期刊介绍:
The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]