A self-guided approach for navigation in a minimalistic foraging robotic swarm

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Autonomous Robots Pub Date : 2023-04-27 DOI:10.1007/s10514-023-10102-y
Steven Adams, Daniel Jarne Ornia, Manuel Mazo Jr
{"title":"A self-guided approach for navigation in a minimalistic foraging robotic swarm","authors":"Steven Adams,&nbsp;Daniel Jarne Ornia,&nbsp;Manuel Mazo Jr","doi":"10.1007/s10514-023-10102-y","DOIUrl":null,"url":null,"abstract":"<div><p>We present a biologically inspired design for swarm foraging based on ant’s pheromone deployment, where the swarm is assumed to have very restricted capabilities. The robots do not require global or relative position measurements and the swarm is fully decentralized and needs no infrastructure in place. Additionally, the system only requires one-hop communication over the robot network, we do not make any assumptions about the connectivity of the communication graph and the transmission of information and computation is scalable versus the number of agents. This is done by letting the agents in the swarm act as foragers or as guiding agents (beacons). We present experimental results computed for a swarm of Elisa-3 robots on a simulator, and show how the swarm self-organizes to solve a foraging problem over an unknown environment, converging to trajectories around the shortest path, and test the approach on a real swarm of Elisa-3 robots. At last, we discuss the limitations of such a system and propose how the foraging efficiency can be increased.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10102-y.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10102-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

We present a biologically inspired design for swarm foraging based on ant’s pheromone deployment, where the swarm is assumed to have very restricted capabilities. The robots do not require global or relative position measurements and the swarm is fully decentralized and needs no infrastructure in place. Additionally, the system only requires one-hop communication over the robot network, we do not make any assumptions about the connectivity of the communication graph and the transmission of information and computation is scalable versus the number of agents. This is done by letting the agents in the swarm act as foragers or as guiding agents (beacons). We present experimental results computed for a swarm of Elisa-3 robots on a simulator, and show how the swarm self-organizes to solve a foraging problem over an unknown environment, converging to trajectories around the shortest path, and test the approach on a real swarm of Elisa-3 robots. At last, we discuss the limitations of such a system and propose how the foraging efficiency can be increased.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于最小觅食机器人群导航的自引导方法
我们提出了一种基于蚂蚁信息素部署的生物启发的群体觅食设计,其中群体被认为具有非常有限的能力。机器人不需要全局或相对位置测量,群体是完全分散的,不需要到位的基础设施。此外,系统只需要在机器人网络上进行一跳通信,我们没有对通信图的连通性做任何假设,并且信息和计算的传输与代理的数量相比是可扩展的。这是通过让群体中的代理充当觅食者或引导代理(信标)来实现的。我们给出了在模拟器上计算Elisa-3机器人群体的实验结果,并展示了群体如何在未知环境中自组织解决觅食问题,收敛到最短路径周围的轨迹,并在真实的Elisa-3机器人群体上测试了该方法。最后,讨论了该系统的局限性,并提出了提高觅食效率的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
期刊最新文献
Optimal policies for autonomous navigation in strong currents using fast marching trees A concurrent learning approach to monocular vision range regulation of leader/follower systems Correction: Planning under uncertainty for safe robot exploration using gaussian process prediction Dynamic event-triggered integrated task and motion planning for process-aware source seeking Continuous planning for inertial-aided systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1