Variational Inference for Cutting Feedback in Misspecified Models

IF 3.4 1区 数学 Q1 STATISTICS & PROBABILITY Statistical Science Pub Date : 2021-08-25 DOI:10.1214/23-sts886
Xue Yu, D. Nott, M. Smith
{"title":"Variational Inference for Cutting Feedback in Misspecified Models","authors":"Xue Yu, D. Nott, M. Smith","doi":"10.1214/23-sts886","DOIUrl":null,"url":null,"abstract":"Bayesian analyses combine information represented by different terms in a joint Bayesian model. When one or more of the terms is misspecified, it can be helpful to restrict the use of information from suspect model components to modify posterior inference. This is called\"cutting feedback\", and both the specification and computation of the posterior for such\"cut models\"is challenging. In this paper, we define cut posterior distributions as solutions to constrained optimization problems, and propose optimization-based variational methods for their computation. These methods are faster than existing Markov chain Monte Carlo (MCMC) approaches for computing cut posterior distributions by an order of magnitude. It is also shown that variational methods allow for the evaluation of computationally intensive conflict checks that can be used to decide whether or not feedback should be cut. Our methods are illustrated in a number of simulated and real examples, including an application where recent methodological advances that combine variational inference and MCMC within the variational optimization are used.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-sts886","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10

Abstract

Bayesian analyses combine information represented by different terms in a joint Bayesian model. When one or more of the terms is misspecified, it can be helpful to restrict the use of information from suspect model components to modify posterior inference. This is called"cutting feedback", and both the specification and computation of the posterior for such"cut models"is challenging. In this paper, we define cut posterior distributions as solutions to constrained optimization problems, and propose optimization-based variational methods for their computation. These methods are faster than existing Markov chain Monte Carlo (MCMC) approaches for computing cut posterior distributions by an order of magnitude. It is also shown that variational methods allow for the evaluation of computationally intensive conflict checks that can be used to decide whether or not feedback should be cut. Our methods are illustrated in a number of simulated and real examples, including an application where recent methodological advances that combine variational inference and MCMC within the variational optimization are used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未指定模型中切削反馈的变分推理
贝叶斯分析将由不同术语表示的信息组合在联合贝叶斯模型中。当一个或多个术语被错误指定时,限制使用来自可疑模型组件的信息来修改后验推理可能会很有帮助。这被称为“切割反馈”,并且这种“切割模型”的后验的规范和计算都是具有挑战性的。在本文中,我们将割后验分布定义为约束优化问题的解,并提出了基于优化的变分方法来计算它们。这些方法比现有的计算切后验分布的马尔可夫链蒙特卡罗(MCMC)方法快一个数量级。还表明,变分方法允许评估计算密集型冲突检查,该冲突检查可用于决定是否应削减反馈。我们的方法在许多模拟和实际例子中得到了说明,包括一个应用,其中使用了在变分优化中结合变分推理和MCMC的最新方法学进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
期刊最新文献
On the Use of Auxiliary Variables in Multilevel Regression and Poststratification. Scalable Empirical Bayes Inference and Bayesian Sensitivity Analysis. Variable Selection Using Bayesian Additive Regression Trees. Causal Inference Methods for Combining Randomized Trials and Observational Studies: A Review. Defining Replicability of Prediction Rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1