When Does Milk Spoil? The Use of Rejection Threshold Methodology to Investigate the Influence of Total Microbial Numbers on the Acceptability of Fresh Chilled Pasteurised Milk
Mohammad Alothman, P. Bremer, Karen Lusk, P. Silcock
{"title":"When Does Milk Spoil? The Use of Rejection Threshold Methodology to Investigate the Influence of Total Microbial Numbers on the Acceptability of Fresh Chilled Pasteurised Milk","authors":"Mohammad Alothman, P. Bremer, Karen Lusk, P. Silcock","doi":"10.3390/beverages9020053","DOIUrl":null,"url":null,"abstract":"The consumer rejection threshold (RjT) method was applied to determine the total microbial numbers (TMNs) where consumers find that the quality of whole fresh chilled pasteurised milk (WFCPM) and skim milk (Trim) stored at 4.5 ± 0.5 °C is no longer acceptable. Food spoilage progression was supported by measurements of VOCs and the terms consumers used to describe the ageing fresh chilled pasteurised milk (FCPM). RjTs for TMN of 7.43 and 7.34 log10 CFU.mL−1 for WFCPM and Trim, respectively were derived using Hill’s equation from a series of paired preference tests comparing fresh and aged milks (3–26 days) assessed by consumers (WFCPM, n = 55; Trim, n = 52). A poor relationship between storage time and TMN was found, owing mainly to batch-to-batch and within-batch variation in the milk’s post-pasteurization contamination (PPC) levels. At the RjT, there was a significant change in the signal intensities for a number of spoilage-related VOCs that occurred in the FCPM headspace (p ≤ 0.05), which were measured using proton transfer reaction–mass spectrometry (PTR-MS), including m/z 33, 45, 47, 61, 63, 69, 71, 87, and 89, tentatively identified as methanol; acetaldehyde; ethanol; acetate (acetic acid and acetate esters); dimethyl sulphide (DMS); isoprene, furan, and aldehydes; 2-butanone; and pentanal and butyrates (butyric acid and butyrate esters), respectively. Consumers described the milks at TMN greater than the RjTs using terms like off, expired, sour, spoilt or rancid. This multidisciplinary study has provided data on the importance of PPC and subsequent increases in TMN on VOCs associated with FCPM and consumer’s preferences and highlighted the value of measuring a range of variables when investigating consumer’s perception of food quality and shelf-life.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beverages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/beverages9020053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The consumer rejection threshold (RjT) method was applied to determine the total microbial numbers (TMNs) where consumers find that the quality of whole fresh chilled pasteurised milk (WFCPM) and skim milk (Trim) stored at 4.5 ± 0.5 °C is no longer acceptable. Food spoilage progression was supported by measurements of VOCs and the terms consumers used to describe the ageing fresh chilled pasteurised milk (FCPM). RjTs for TMN of 7.43 and 7.34 log10 CFU.mL−1 for WFCPM and Trim, respectively were derived using Hill’s equation from a series of paired preference tests comparing fresh and aged milks (3–26 days) assessed by consumers (WFCPM, n = 55; Trim, n = 52). A poor relationship between storage time and TMN was found, owing mainly to batch-to-batch and within-batch variation in the milk’s post-pasteurization contamination (PPC) levels. At the RjT, there was a significant change in the signal intensities for a number of spoilage-related VOCs that occurred in the FCPM headspace (p ≤ 0.05), which were measured using proton transfer reaction–mass spectrometry (PTR-MS), including m/z 33, 45, 47, 61, 63, 69, 71, 87, and 89, tentatively identified as methanol; acetaldehyde; ethanol; acetate (acetic acid and acetate esters); dimethyl sulphide (DMS); isoprene, furan, and aldehydes; 2-butanone; and pentanal and butyrates (butyric acid and butyrate esters), respectively. Consumers described the milks at TMN greater than the RjTs using terms like off, expired, sour, spoilt or rancid. This multidisciplinary study has provided data on the importance of PPC and subsequent increases in TMN on VOCs associated with FCPM and consumer’s preferences and highlighted the value of measuring a range of variables when investigating consumer’s perception of food quality and shelf-life.