Lilibeth Ortega-Pineda, Maria Angelica Rincon-Benavides, Tatiana Z. Cuellar-Gaviria, Mia Kordowski, Elizabeth Guilfoyle, Amrita Lakshmi Anaparthi, Luke R. Lemmerman, William Lawrence, Jill L. Buss, Binbin Deng, Britani N. Blackstone, Ana Salazar-Puerta, David W. McComb, Heather Powell, Daniel Gallego-Perez, Natalia Higuita-Castro
{"title":"Engineered Extracellular Vesicles from Human Skin Cells Induce Pro-β-Cell Conversions in Pancreatic Ductal Cells","authors":"Lilibeth Ortega-Pineda, Maria Angelica Rincon-Benavides, Tatiana Z. Cuellar-Gaviria, Mia Kordowski, Elizabeth Guilfoyle, Amrita Lakshmi Anaparthi, Luke R. Lemmerman, William Lawrence, Jill L. Buss, Binbin Deng, Britani N. Blackstone, Ana Salazar-Puerta, David W. McComb, Heather Powell, Daniel Gallego-Perez, Natalia Higuita-Castro","doi":"10.1002/anbr.202200173","DOIUrl":null,"url":null,"abstract":"<p>Direct nuclear reprogramming has the potential to enable the development of <i>β</i> cell replacement therapies for diabetes that do not require the use of progenitor/stem cell populations. However, despite their promise, current approaches to <i>β</i> cell-directed reprogramming rely heavily on the use of viral vectors. Herein, the use of extracellular vesicles (EVs) derived from human dermal fibroblasts (HDFs) is explored as novel nonviral carriers of endocrine cell-patterning transcription factors, to transfect and transdifferentiate pancreatic ductal epithelial cells (PDCs) into hormone-expressing cells. Electrotransfection of HDFs with expression plasmids for Pdx1, Ngn3, and MafA (PNM) leads to the release of EVs loaded with PNM at the gene, mRNA, and protein levels. Exposing PDC cultures to PNM-loaded EVs leads to successful transfection and increases PNM expression in PDCs, which ultimately result in endocrine cell-directed conversions based on the expression of insulin/c-peptide, glucagon, and glucose transporter 2 (Glut2). These findings are further corroborated in vivo in a mouse model following intraductal injection of PNM- versus sham-loaded EVs. Collectively, these findings suggest that dermal fibroblast-derived EVs can potentially serve as a powerful platform technology for the development and deployment of nonviral reprogramming-based cell therapies for insulin-dependent diabetes.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202200173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202200173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct nuclear reprogramming has the potential to enable the development of β cell replacement therapies for diabetes that do not require the use of progenitor/stem cell populations. However, despite their promise, current approaches to β cell-directed reprogramming rely heavily on the use of viral vectors. Herein, the use of extracellular vesicles (EVs) derived from human dermal fibroblasts (HDFs) is explored as novel nonviral carriers of endocrine cell-patterning transcription factors, to transfect and transdifferentiate pancreatic ductal epithelial cells (PDCs) into hormone-expressing cells. Electrotransfection of HDFs with expression plasmids for Pdx1, Ngn3, and MafA (PNM) leads to the release of EVs loaded with PNM at the gene, mRNA, and protein levels. Exposing PDC cultures to PNM-loaded EVs leads to successful transfection and increases PNM expression in PDCs, which ultimately result in endocrine cell-directed conversions based on the expression of insulin/c-peptide, glucagon, and glucose transporter 2 (Glut2). These findings are further corroborated in vivo in a mouse model following intraductal injection of PNM- versus sham-loaded EVs. Collectively, these findings suggest that dermal fibroblast-derived EVs can potentially serve as a powerful platform technology for the development and deployment of nonviral reprogramming-based cell therapies for insulin-dependent diabetes.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.