{"title":"IDCUP Algorithm to Classifying Arbitrary Shapes and Densities for Center-based Clustering Performance Analysis","authors":"S. Altaf, Muhammad Waseem Waseem, Laila Kazmi","doi":"10.28945/4541","DOIUrl":null,"url":null,"abstract":"Aim/Purpose The clustering techniques are normally considered to determine the significant and meaningful subclasses purposed in datasets. It is an unsupervised type of Machine Learning (ML) where the objective is to form groups from objects based on their similarity and used to determine the implicit relationships between the different features of the data. Cluster Analysis is considered a significant problem area in data exploration when dealing with arbitrary shape problems in different datasets. Clustering on large data sets has the following challenges: (1) clusters with arbitrary shapes; (2) less knowledge discovery process to decide the possible input features; (3) scalability for large data sizes. Density-based clustering has been known as a dominant method for determining the arbitrary-shape clusters. Background Existing density-based clustering methods commonly cited in the literature have been examined in terms of their behavior with data sets that contain nested clusters of varying density. The existing methods are not enough or ideal for such data sets, because they typically partition the data into clusters that cannot be nested.","PeriodicalId":38962,"journal":{"name":"Interdisciplinary Journal of Information, Knowledge, and Management","volume":"15 1","pages":"091-108"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Journal of Information, Knowledge, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28945/4541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
Aim/Purpose The clustering techniques are normally considered to determine the significant and meaningful subclasses purposed in datasets. It is an unsupervised type of Machine Learning (ML) where the objective is to form groups from objects based on their similarity and used to determine the implicit relationships between the different features of the data. Cluster Analysis is considered a significant problem area in data exploration when dealing with arbitrary shape problems in different datasets. Clustering on large data sets has the following challenges: (1) clusters with arbitrary shapes; (2) less knowledge discovery process to decide the possible input features; (3) scalability for large data sizes. Density-based clustering has been known as a dominant method for determining the arbitrary-shape clusters. Background Existing density-based clustering methods commonly cited in the literature have been examined in terms of their behavior with data sets that contain nested clusters of varying density. The existing methods are not enough or ideal for such data sets, because they typically partition the data into clusters that cannot be nested.