S. F. Moosavi, N. Salehnia, Ahmad Seifi, Ahmadreza Asgharpourmasouleh, N. Salehnia
{"title":"Designing and calibrating an agent‐based platform to evaluate the effect of climate variables on residential water demand","authors":"S. F. Moosavi, N. Salehnia, Ahmad Seifi, Ahmadreza Asgharpourmasouleh, N. Salehnia","doi":"10.1111/wej.12864","DOIUrl":null,"url":null,"abstract":"Many Iranian metropolises, including Shiraz, are situated in arid and semi‐arid regions, lacking sufficient renewable water resources. In recent years, climate changes, including drought and rising temperatures, have led to changes in water supply and demand. Given the necessity and importance of urban water supply, this study investigates the impact of different climate scenarios on residential water demand. Many studies, in their models, do not consider the social interactions between household water consumers and the change in their consumption behaviour, which serves as a fundamental drawback. Thus, the present research attempts to propose an agent‐based framework by modelling social interactions via the diffusion process to investigate water consumption behaviour efficiently. The model is calibrated and applied to Shiraz City in Iran, according to the data from 2006 to 2019, and it is used to simulate each scenario for the following years until 2032. The findings show that temperature has a positive and significant effect on residential water consumption; yet, rainfall negatively affects water consumption. The simulation results of these scenarios for temperature increase or decrease and rainfall changes are estimated. In addition, the developed agent‐based platform can be easily calibrated and adjusted based on the data of any other city to simulate water demand estimation under different climatic and even economic scenarios. Urban water managers can benefit from such estimates to plan future infrastructure development and proactive management of seasonal water resources under the growing pressure of potential climate change because construing the sensitivity of seasonal water consumption to climate conditions is essential to respond to variations in demand.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"37 1","pages":"604 - 615"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12864","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Many Iranian metropolises, including Shiraz, are situated in arid and semi‐arid regions, lacking sufficient renewable water resources. In recent years, climate changes, including drought and rising temperatures, have led to changes in water supply and demand. Given the necessity and importance of urban water supply, this study investigates the impact of different climate scenarios on residential water demand. Many studies, in their models, do not consider the social interactions between household water consumers and the change in their consumption behaviour, which serves as a fundamental drawback. Thus, the present research attempts to propose an agent‐based framework by modelling social interactions via the diffusion process to investigate water consumption behaviour efficiently. The model is calibrated and applied to Shiraz City in Iran, according to the data from 2006 to 2019, and it is used to simulate each scenario for the following years until 2032. The findings show that temperature has a positive and significant effect on residential water consumption; yet, rainfall negatively affects water consumption. The simulation results of these scenarios for temperature increase or decrease and rainfall changes are estimated. In addition, the developed agent‐based platform can be easily calibrated and adjusted based on the data of any other city to simulate water demand estimation under different climatic and even economic scenarios. Urban water managers can benefit from such estimates to plan future infrastructure development and proactive management of seasonal water resources under the growing pressure of potential climate change because construing the sensitivity of seasonal water consumption to climate conditions is essential to respond to variations in demand.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure