A Coarse-to-Fine Registration on 3D Multi-Phase Abdominal CT Images

Shao-di Yang, Fan Zhang, Zhen Yang, Xiaoyu Yang, Shuzhou Li
{"title":"A Coarse-to-Fine Registration on 3D Multi-Phase Abdominal CT Images","authors":"Shao-di Yang, Fan Zhang, Zhen Yang, Xiaoyu Yang, Shuzhou Li","doi":"10.1166/NNL.2020.3194","DOIUrl":null,"url":null,"abstract":"Registration is a technical support for the integration of nanomaterial imaging-aided diagnosis and treatment. In this paper, a coarse-to-fine three-dimensional (3D) multi-phase abdominal CT images registration method is proposed. Firstly, a linear model is used to coarsely register\n the paired multiphase images. Secondly, an intensity-based registration framework is proposed, which contains the data and spatial regularization terms and performs fine registration on the paired images obtained in the coarse registration step. The results illustrate that the proposed method\n is superior to some existing methods with the average MSE, PSNR, and SSIM values of 0.0082, 21.2695, and 0.8956, respectively. Therefore, the proposed method provides an efficient and robust framework for 3D multi-phase abdominal CT images registration.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"909-914"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Registration is a technical support for the integration of nanomaterial imaging-aided diagnosis and treatment. In this paper, a coarse-to-fine three-dimensional (3D) multi-phase abdominal CT images registration method is proposed. Firstly, a linear model is used to coarsely register the paired multiphase images. Secondly, an intensity-based registration framework is proposed, which contains the data and spatial regularization terms and performs fine registration on the paired images obtained in the coarse registration step. The results illustrate that the proposed method is superior to some existing methods with the average MSE, PSNR, and SSIM values of 0.0082, 21.2695, and 0.8956, respectively. Therefore, the proposed method provides an efficient and robust framework for 3D multi-phase abdominal CT images registration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腹部CT三维多期图像的粗到细配准
注册是集成纳米材料成像辅助诊断和治疗的技术支持。本文提出了一种从粗到细的三维(3D)多相腹部CT图像配准方法。首先,使用线性模型对成对的多相图像进行粗配准。其次,提出了一种基于强度的配准框架,该框架包含数据和空间正则化项,并对粗配准步骤中获得的成对图像进行精细配准。结果表明,所提出的方法优于现有的一些方法,平均MSE、PSNR和SSIM值分别为0.0082、21.2695和0.8956。因此,所提出的方法为三维多相腹部CT图像配准提供了一个高效而稳健的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscience and Nanotechnology Letters
Nanoscience and Nanotechnology Letters Physical, Chemical & Earth Sciences-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
审稿时长
2.6 months
期刊最新文献
Identification of Immune-Related Prognostic Biomarkers in Pancreatic Cancer Nanocomposite Detection of Elemental Impurities and Process Correlation Analysis of Ceftriaxone Sodium for Injection Astragalus Polysaccharide Nano-Liposomes Modulate the Inflammatory Response and Oxidative Stress in Stroke-Associated Pneumonia by Increasing OIP5-AS1 to Regulate the miR-128-3p/SIRT1 Pathway miR-199a-3p Inhibitor Delivered Through Nano-Drug Delivery Systems Suppresses Tumor Cell Survival and Metastasis Construction of Functional Renal Targeting Nano Drug Liposome and Its Effect on Lupus Nephritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1