U. Sinha, Naruti Longkumer, Kikoleho Richa, Rituparna Karmaker, Basanta Singha
{"title":"Experimental and Theoretical Investigations on the Antibacterial Activity of some Bromoaniline Compounds","authors":"U. Sinha, Naruti Longkumer, Kikoleho Richa, Rituparna Karmaker, Basanta Singha","doi":"10.2174/2211352521666230126123021","DOIUrl":null,"url":null,"abstract":"\n\nTest substrates are routinely used in laboratories to test the efficacy of various reactions, and while many substrates have found success as test substrates, not much is known about their potential intrinsic properties. On that note, some bromoaniline compounds were synthesized and repurposed by studying their antibacterial activity\n\n\n\nThe in-vitro antibacterial tests were done against S. aureus, K. pneumoniae, B. subtilis, and E. coli. tests were carried out to understand the mode of action of the compounds where changes in permeability and integrity of cell membrane resulting in the leakage of UV absorbing materials were observed. Computational studies were performed by employing density functional theory (DFT) in the Gaussian09 software for determining the reactivity of the studied compounds. Molecular docking studies were executed to define the interaction of the synthesized compounds with microbial target proteins, Dihydrofolate reductase (PDB ID: 3SRW) and DNA gyrase subunit B (PDB ID: 1KZN).\n\n\n\nThe compound’s response to the mode of action tests showed alteration in the membrane permeability and its antimicrobial effectiveness at different pH contributed it to being a potential antibiotic. The results of DFT studies revealed that the molecular descriptors indicate better reactivity of compound 8b which is in agreement with the experiments performed. Molecular docking studies revealed that interactions of the compounds at the active sites of target proteins depict that the compounds are likely to bind to the protein enhancing their potential as antibacterial agents.\n\n\n\nThis work concludes that simple molecules synthesized effortlessly through a simple and environmentally benign pathway, can pose as a good therapeutic agent.\n","PeriodicalId":7951,"journal":{"name":"Anti-Infective Agents","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Infective Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2211352521666230126123021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Test substrates are routinely used in laboratories to test the efficacy of various reactions, and while many substrates have found success as test substrates, not much is known about their potential intrinsic properties. On that note, some bromoaniline compounds were synthesized and repurposed by studying their antibacterial activity
The in-vitro antibacterial tests were done against S. aureus, K. pneumoniae, B. subtilis, and E. coli. tests were carried out to understand the mode of action of the compounds where changes in permeability and integrity of cell membrane resulting in the leakage of UV absorbing materials were observed. Computational studies were performed by employing density functional theory (DFT) in the Gaussian09 software for determining the reactivity of the studied compounds. Molecular docking studies were executed to define the interaction of the synthesized compounds with microbial target proteins, Dihydrofolate reductase (PDB ID: 3SRW) and DNA gyrase subunit B (PDB ID: 1KZN).
The compound’s response to the mode of action tests showed alteration in the membrane permeability and its antimicrobial effectiveness at different pH contributed it to being a potential antibiotic. The results of DFT studies revealed that the molecular descriptors indicate better reactivity of compound 8b which is in agreement with the experiments performed. Molecular docking studies revealed that interactions of the compounds at the active sites of target proteins depict that the compounds are likely to bind to the protein enhancing their potential as antibacterial agents.
This work concludes that simple molecules synthesized effortlessly through a simple and environmentally benign pathway, can pose as a good therapeutic agent.
期刊介绍:
Anti-Infective Agents publishes original research articles, full-length/mini reviews, drug clinical trial studies and guest edited issues on all the latest and outstanding developments on the medicinal chemistry, biology, pharmacology and use of anti-infective and anti-parasitic agents. The scope of the journal covers all pre-clinical and clinical research on antimicrobials, antibacterials, antiviral, antifungal, and antiparasitic agents. Anti-Infective Agents is an essential journal for all infectious disease researchers in industry, academia and the health services.