Influence of meteorological conditions on noise dispersion in the Port of Thessaloniki

IF 1.7 Q2 ACOUSTICS Noise Mapping Pub Date : 2020-01-01 DOI:10.1515/noise-2020-0012
S. Pilicic, I. Kegalj, Eirini Tserga, T. Milošević, R. Žigulić, Ante Skoblar, L. Traven
{"title":"Influence of meteorological conditions on noise dispersion in the Port of Thessaloniki","authors":"S. Pilicic, I. Kegalj, Eirini Tserga, T. Milošević, R. Žigulić, Ante Skoblar, L. Traven","doi":"10.1515/noise-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Although noise dispersion models are widely used for the assessment of noise levels across different domains, the influence of meteorological conditions on environmental noise is usually neglected even though modelling requirements often list meteorological data as a key part for conducting successful modelling exercises. In order to evaluate the magnitude of influence of meteorological conditions on noise dispersion, different meteorological scenarios have been tested. The meteorological parameters that have been addressed include wind speed and direction, air temperature and atmospheric pressure. The simulations have been performed using data obtained from the Port of Thessaloniki, which include standard noise data (locations of noise sources and barriers, noise power levels of individual sources), as well as yearly averages and extremes for the meteorological parameters. Wind speed and direction have been shown to have a major influence on environmental noise levels. The modelled difference in levels due to changes in wind speed and direction reached 7 dB in several receivers indicating an effect that should not be neglected. Air temperature and atmospheric pressure had very little influence on noise levels. In conclusion, when addressing and modelling environmental noise levels, wind speed and direction must be properly accounted for and should not be neglected.","PeriodicalId":44086,"journal":{"name":"Noise Mapping","volume":"7 1","pages":"135 - 145"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/noise-2020-0012","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Mapping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/noise-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Although noise dispersion models are widely used for the assessment of noise levels across different domains, the influence of meteorological conditions on environmental noise is usually neglected even though modelling requirements often list meteorological data as a key part for conducting successful modelling exercises. In order to evaluate the magnitude of influence of meteorological conditions on noise dispersion, different meteorological scenarios have been tested. The meteorological parameters that have been addressed include wind speed and direction, air temperature and atmospheric pressure. The simulations have been performed using data obtained from the Port of Thessaloniki, which include standard noise data (locations of noise sources and barriers, noise power levels of individual sources), as well as yearly averages and extremes for the meteorological parameters. Wind speed and direction have been shown to have a major influence on environmental noise levels. The modelled difference in levels due to changes in wind speed and direction reached 7 dB in several receivers indicating an effect that should not be neglected. Air temperature and atmospheric pressure had very little influence on noise levels. In conclusion, when addressing and modelling environmental noise levels, wind speed and direction must be properly accounted for and should not be neglected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气象条件对塞萨洛尼基港口噪声扩散的影响
摘要尽管噪声分散模型被广泛用于评估不同领域的噪声水平,但气象条件对环境噪声的影响通常被忽视,尽管建模要求通常将气象数据列为成功建模的关键部分。为了评估气象条件对噪声扩散的影响程度,测试了不同的气象情景。已处理的气象参数包括风速和风向、气温和大气压力。模拟是使用从塞萨洛尼基港获得的数据进行的,其中包括标准噪声数据(噪声源和屏障的位置、单个源的噪声功率水平),以及气象参数的年平均值和极值。风速和风向已被证明对环境噪声水平有重大影响。由于风速和风向的变化,在几个接收器中模拟的水平差异达到了7 dB,这表明了不应忽视的影响。空气温度和大气压力对噪音水平的影响很小。总之,在处理和模拟环境噪声水平时,必须正确考虑风速和风向,不应忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Noise Mapping
Noise Mapping ACOUSTICS-
CiteScore
7.80
自引率
17.90%
发文量
5
审稿时长
12 weeks
期刊介绍: Ever since its inception, Noise Mapping has been offering fast and comprehensive peer-review, while featuring prominent researchers among its Advisory Board. As a result, the journal is set to acquire a growing reputation as the main publication in the field of noise mapping, thus leading to a significant Impact Factor. The journal aims to promote and disseminate knowledge on noise mapping through the publication of high quality peer-reviewed papers focusing on the following aspects: noise mapping and noise action plans: case studies; models and algorithms for source characterization and outdoor sound propagation: proposals, applications, comparisons, round robin tests; local, national and international policies and good practices for noise mapping, planning, management and control; evaluation of noise mitigation actions; evaluation of environmental noise exposure; actions and communications to increase public awareness of environmental noise issues; outdoor soundscape studies and mapping; classification, evaluation and preservation of quiet areas.
期刊最新文献
Three-dimensional visualisation of traffic noise based on the Henk de-Klujijver model Noise pollution and associated health impacts at Ganeshpeth Bus Terminus in Nagpur, India Reliability of smart noise pollution map Statistical modeling of traffic noise at intersections in a mid-sized city, India Case study on the audibility of siren-driven alert systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1