For Interpolating Kernel Machines, Minimizing the Norm of the ERM Solution Maximizes Stability

IF 2 2区 数学 Q1 MATHEMATICS Analysis and Applications Pub Date : 2020-06-28 DOI:10.1142/s0219530522400115
Akshay Rangamani, L. Rosasco, T. Poggio
{"title":"For Interpolating Kernel Machines, Minimizing the Norm of the ERM Solution Maximizes Stability","authors":"Akshay Rangamani, L. Rosasco, T. Poggio","doi":"10.1142/s0219530522400115","DOIUrl":null,"url":null,"abstract":"We study the average $\\mbox{CV}_{loo}$ stability of kernel ridge-less regression and derive corresponding risk bounds. We show that the interpolating solution with minimum norm minimizes a bound on $\\mbox{CV}_{loo}$ stability, which in turn is controlled by the condition number of the empirical kernel matrix. The latter can be characterized in the asymptotic regime where both the dimension and cardinality of the data go to infinity. Under the assumption of random kernel matrices, the corresponding test error should be expected to follow a double descent curve.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522400115","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

We study the average $\mbox{CV}_{loo}$ stability of kernel ridge-less regression and derive corresponding risk bounds. We show that the interpolating solution with minimum norm minimizes a bound on $\mbox{CV}_{loo}$ stability, which in turn is controlled by the condition number of the empirical kernel matrix. The latter can be characterized in the asymptotic regime where both the dimension and cardinality of the data go to infinity. Under the assumption of random kernel matrices, the corresponding test error should be expected to follow a double descent curve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对于插值核机,最小化ERM解的范数使稳定性最大化
我们研究了$\box的平均值{CV}_核无岭回归的{loo}$稳定性,并推导出相应的风险界。我们证明了具有最小范数的插值解最小化$\mbox上的一个界{CV}_{loo}$稳定性,这反过来又由经验核矩阵的条件数控制。后者可以在渐近状态下表征,其中数据的维数和基数都达到无穷大。在随机核矩阵的假设下,相应的测试误差应该遵循双下降曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
期刊最新文献
On the strong solution for a diffuse interface model of non-Newtonian two-phase flows Distributed SGD in Overparameterized Linear Regression Interpolatory Taylor and Lidstone series Author index Volume 21 (2023) Convergence Analysis of Deep Residual Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1