Analysis of simultaneous inpainting and geometric separation based on sparse decomposition

IF 2 2区 数学 Q1 MATHEMATICS Analysis and Applications Pub Date : 2020-09-20 DOI:10.1142/S021953052150007X
Van Tiep Do, R. Levie, Gitta Kutyniok
{"title":"Analysis of simultaneous inpainting and geometric separation based on sparse decomposition","authors":"Van Tiep Do, R. Levie, Gitta Kutyniok","doi":"10.1142/S021953052150007X","DOIUrl":null,"url":null,"abstract":"Natural images are often the superposition of various parts of different geometric characteristics. For instance, an image might be a mixture of cartoon and texture structures. In addition, images are often given with missing data. In this paper, we develop a method for simultaneously decomposing an image to its two underlying parts and inpainting the missing data. Our separation–inpainting method is based on an [Formula: see text] minimization approach, using two dictionaries, each sparsifying one of the image parts but not the other. We introduce a comprehensive convergence analysis of our method, in a general setting, utilizing the concepts of joint concentration, clustered sparsity, and cluster coherence. As the main application of our theory, we consider the problem of separating and inpainting an image to a cartoon and texture parts.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S021953052150007X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Natural images are often the superposition of various parts of different geometric characteristics. For instance, an image might be a mixture of cartoon and texture structures. In addition, images are often given with missing data. In this paper, we develop a method for simultaneously decomposing an image to its two underlying parts and inpainting the missing data. Our separation–inpainting method is based on an [Formula: see text] minimization approach, using two dictionaries, each sparsifying one of the image parts but not the other. We introduce a comprehensive convergence analysis of our method, in a general setting, utilizing the concepts of joint concentration, clustered sparsity, and cluster coherence. As the main application of our theory, we consider the problem of separating and inpainting an image to a cartoon and texture parts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏分解的同时修复和几何分离分析
自然图像往往是不同几何特征的各个部分的叠加。例如,一个图像可能是卡通和纹理结构的混合。此外,图像通常带有缺失的数据。在本文中,我们开发了一种同时将图像分解为其两个底层部分并对缺失数据进行补绘的方法。我们的分离-绘制方法是基于[公式:见文本]最小化方法,使用两个字典,每个字典稀疏图像的一部分,而不是其他部分。我们在一般情况下,利用联合集中、聚类稀疏性和聚类相干性的概念,对我们的方法进行了全面的收敛分析。作为我们理论的主要应用,我们考虑了将图像分离并绘制成卡通和纹理部分的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
期刊最新文献
On the strong solution for a diffuse interface model of non-Newtonian two-phase flows Distributed SGD in Overparameterized Linear Regression Interpolatory Taylor and Lidstone series Author index Volume 21 (2023) Convergence Analysis of Deep Residual Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1