{"title":"DYNAMICS RESPONSE OF THE HUMAN HEAD DURING DRYWALL IMPACT","authors":"M. Liebschner, L. Waite","doi":"10.34107/yhpn9422.04136","DOIUrl":null,"url":null,"abstract":"Little experimental data has been reported on the biomechanics of head collisions with drywall sections. The dynamics of head collisions with rigid structures are well documented. However, impacts with compliant, composite structures are more difficult to analyze. The study objective was to correlate the severity of a head impact with damage to the drywall. A human head analog was instrumented with a tri-axial accelerometer and a uniaxial load cell was placed along the cervical spine axis. A randomized block design of drop height and head orientation was utilized. The test results indicated a primarily linear correlation between drop height and peak head acceleration, as well as correlation between drop height and the geometry of the indentation to the drywall. Head posture had little influence on wall damage, however, head extension resulted in a stiffer head-spine complex compared to a flexed posture. A two-factor ANOVA determined a statistically significant correlation between damage severity and impact velocity. The results obtained can be used by accident reconstructionists to approximate the impact severity of a head impacting drywall. The study data are limited to drywall sections of known, similar geometry, and does not apply to scenarios with a support beam directly beneath the drywall. Further studies are needed to investigate additional head postures.","PeriodicalId":75599,"journal":{"name":"Biomedical sciences instrumentation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical sciences instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34107/yhpn9422.04136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Little experimental data has been reported on the biomechanics of head collisions with drywall sections. The dynamics of head collisions with rigid structures are well documented. However, impacts with compliant, composite structures are more difficult to analyze. The study objective was to correlate the severity of a head impact with damage to the drywall. A human head analog was instrumented with a tri-axial accelerometer and a uniaxial load cell was placed along the cervical spine axis. A randomized block design of drop height and head orientation was utilized. The test results indicated a primarily linear correlation between drop height and peak head acceleration, as well as correlation between drop height and the geometry of the indentation to the drywall. Head posture had little influence on wall damage, however, head extension resulted in a stiffer head-spine complex compared to a flexed posture. A two-factor ANOVA determined a statistically significant correlation between damage severity and impact velocity. The results obtained can be used by accident reconstructionists to approximate the impact severity of a head impacting drywall. The study data are limited to drywall sections of known, similar geometry, and does not apply to scenarios with a support beam directly beneath the drywall. Further studies are needed to investigate additional head postures.