Large-scale salmon farming in Norway impacts the epiphytic community of Laminaria hyperborea

IF 2.2 2区 农林科学 Q2 FISHERIES Aquaculture Environment Interactions Pub Date : 2021-03-25 DOI:10.3354/AEI00392
M. O’Riain, Caroline S Armitage, T. Kutti, V. Husa, Skogen, T. Bekkby, M. Carvajalino‐Fernández, R. Bannister, C. White, K. M. Norderhaug, S. Fredriksen
{"title":"Large-scale salmon farming in Norway impacts the epiphytic community of Laminaria hyperborea","authors":"M. O’Riain, Caroline S Armitage, T. Kutti, V. Husa, Skogen, T. Bekkby, M. Carvajalino‐Fernández, R. Bannister, C. White, K. M. Norderhaug, S. Fredriksen","doi":"10.3354/AEI00392","DOIUrl":null,"url":null,"abstract":"Large-scale finfish farms are increasingly located in dispersive hard-bottom environments where Laminaria hyperborea forests dominate; however, the interactions between farm effluents and kelp forests are poorly understood. Effects of 2 levels of salmonid fish-farming effluents (high and low) on L. hyperborea epiphytic communities were studied by sampling canopy plants from 12 sites in 2 high-energy dispersive environments. Specifically, we assessed if farm effluents stimulated fast-growing epiphytic algae and faunal species on L. hyperborea stipes—as this can impact the kelp forest community composition—and/or an increased lamina epiphytic growth, which could negatively impact the kelp itself. We found that bryozoan biomass on the stipes was significantly higher at high-effluent farm sites compared to low-effluent farm and reference sites, resulting in a significantly different epiphytic community. Macroalgal biomass also increased with increasing effluent levels, including opportunistic Ectocarpus spp., resulting in a less heterogeneous macroalgae community at high-effluent farm sites. This habitat heterogeneity was further reduced by the high bryozoan biomass at the high-effluent sites. Such changes in the epiphyte community could have implications for the faunal community that relies on the epiphytes for food and refuge. On the kelp lamina, no clear response to farm effluents was found.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00392","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 2

Abstract

Large-scale finfish farms are increasingly located in dispersive hard-bottom environments where Laminaria hyperborea forests dominate; however, the interactions between farm effluents and kelp forests are poorly understood. Effects of 2 levels of salmonid fish-farming effluents (high and low) on L. hyperborea epiphytic communities were studied by sampling canopy plants from 12 sites in 2 high-energy dispersive environments. Specifically, we assessed if farm effluents stimulated fast-growing epiphytic algae and faunal species on L. hyperborea stipes—as this can impact the kelp forest community composition—and/or an increased lamina epiphytic growth, which could negatively impact the kelp itself. We found that bryozoan biomass on the stipes was significantly higher at high-effluent farm sites compared to low-effluent farm and reference sites, resulting in a significantly different epiphytic community. Macroalgal biomass also increased with increasing effluent levels, including opportunistic Ectocarpus spp., resulting in a less heterogeneous macroalgae community at high-effluent farm sites. This habitat heterogeneity was further reduced by the high bryozoan biomass at the high-effluent sites. Such changes in the epiphyte community could have implications for the faunal community that relies on the epiphytes for food and refuge. On the kelp lamina, no clear response to farm effluents was found.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挪威大规模养殖三文鱼对海带附生群落的影响
大型鳍鱼养殖场越来越多地位于分散的硬底环境中,那里的海带林占主导地位;然而,人们对农场废水和海带林之间的相互作用知之甚少。通过在2个高能分散环境中对12个地点的冠层植物进行采样,研究了2种水平的鲑鱼养殖废水(高和低)对L.overborea附生群落的影响。具体而言,我们评估了农场废水是否刺激了L.overborea菌柄上快速生长的附生藻类和动物物种——因为这会影响海带森林群落的组成——和/或增加了叶片附生生长,这可能会对海带本身产生负面影响。我们发现,与低排放农场和参考地点相比,高排放农场地点的苔藓虫生物量显著更高,导致附生群落显著不同。大型藻类生物量也随着污水水平的增加而增加,包括机会性Ectocarpus spp.,导致高污水农场的大型藻类群落不那么异质。这种生境异质性因高出水地点的高苔藓虫生物量而进一步减少。附生植物群落的这种变化可能会对依赖附生植物作为食物和避难所的动物群落产生影响。在海带叶片上,没有发现对农场废水的明显反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Environment Interactions
Aquaculture Environment Interactions FISHERIES-MARINE & FRESHWATER BIOLOGY
CiteScore
4.90
自引率
13.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with inter­actions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include: -Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture. -Effects on benthic and pelagic assemblages or pro­cesses that are related to aquaculture activities. -Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations. -Parasite and pathogen interactions between farmed and wild stocks. -Comparisons of the environmental effects of traditional and organic aquaculture. -Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild. -Effects of capture-based aquaculture (ranching). -Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures. -Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems. -Effects of climate change and environmental variability on aquaculture activities. -Modelling of aquaculture–environment interactions; ­assessment of carrying capacity. -Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport). -Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.
期刊最新文献
Effects on enzyme activity and DNA integrity in rainbow trout Oncorhynchus mykiss exposed to fish farm effluents Invasion risk to the United States from Arapaima spp. hinges on climate suitability Accumulation of microcystins, bacterial community composition and mlrA gene abundance in shrimp culture ponds CORRECTION: Temporal variation in sea trout Salmo trutta life history traits in the Erriff River, western Ireland Quantification of finfish assemblages associated with mussel and seaweed farms in southwest UK provides evidence of potential benefits to fisheries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1