ANALYSIS OF "LEARN-AS-YOU-GO" (LAGO) STUDIES.

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY Annals of Statistics Pub Date : 2018-08-20 DOI:10.1214/20-AOS1978
D. Nevo, J. Lok, D. Spiegelman
{"title":"ANALYSIS OF \"LEARN-AS-YOU-GO\" (LAGO) STUDIES.","authors":"D. Nevo, J. Lok, D. Spiegelman","doi":"10.1214/20-AOS1978","DOIUrl":null,"url":null,"abstract":"In Learn-As-you-GO (LAGO) adaptive studies, the intervention is a complex multicomponent package, and is adapted in stages during the study based on past outcome data. This design formalizes standard practice in public health intervention studies. An effective intervention package is sought, while minimizing intervention package cost. In LAGO study data, the interventions in later stages depend upon the outcomes in the previous stages, violating standard statistical theory. We develop an estimator for the intervention effects, and prove consistency and asymptotic normality using a novel coupling argument, ensuring the validity of the test for the hypothesis of no overall intervention effect. We develop a confidence set for the optimal intervention package and confidence bands for the success probabilities under alternative package compositions. We illustrate our methods in the BetterBirth Study, which aimed to improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a multicomponent intervention package.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"49 2 1","pages":"793-819"},"PeriodicalIF":3.2000,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AOS1978","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

In Learn-As-you-GO (LAGO) adaptive studies, the intervention is a complex multicomponent package, and is adapted in stages during the study based on past outcome data. This design formalizes standard practice in public health intervention studies. An effective intervention package is sought, while minimizing intervention package cost. In LAGO study data, the interventions in later stages depend upon the outcomes in the previous stages, violating standard statistical theory. We develop an estimator for the intervention effects, and prove consistency and asymptotic normality using a novel coupling argument, ensuring the validity of the test for the hypothesis of no overall intervention effect. We develop a confidence set for the optimal intervention package and confidence bands for the success probabilities under alternative package compositions. We illustrate our methods in the BetterBirth Study, which aimed to improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a multicomponent intervention package.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“随学随走”(lago)研究分析。
在“随做随学”(LAGO)适应性研究中,干预措施是一个复杂的多组件包,并且在研究过程中根据过去的结果数据分阶段进行调整。本设计正式确立了公共卫生干预研究的标准做法。寻求有效的干预方案,同时最小化干预方案的成本。在LAGO研究数据中,后期的干预取决于前阶段的结果,违反了标准的统计理论。我们建立了干预效应的估计量,并使用一个新的耦合参数证明了一致性和渐近正态性,从而保证了对没有总体干预效应假设的检验的有效性。我们建立了最优干预方案的置信集和不同干预方案组合下成功概率的置信带。我们在“更好的出生研究”中阐述了我们的方法,该研究旨在通过多组分干预方案改善印度北方邦157,689名新生儿的孕产妇和新生儿结局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
期刊最新文献
ON BLOCKWISE AND REFERENCE PANEL-BASED ESTIMATORS FOR GENETIC DATA PREDICTION IN HIGH DIMENSIONS. RANK-BASED INDICES FOR TESTING INDEPENDENCE BETWEEN TWO HIGH-DIMENSIONAL VECTORS. Single index Fréchet regression Graphical models for nonstationary time series On lower bounds for the bias-variance trade-off
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1