Predictive Adaptive Test with Selective Weighted Bayesian Through Questions and Answers Patterns to Measure Student Competency Levels

T. Matulatan, M. Bettiza, Muhamad Radzi Rathomi, N. Ritha, N. Hayaty
{"title":"Predictive Adaptive Test with Selective Weighted Bayesian Through Questions and Answers Patterns to Measure Student Competency Levels","authors":"T. Matulatan, M. Bettiza, Muhamad Radzi Rathomi, N. Ritha, N. Hayaty","doi":"10.14710/JTSISKOM.7.2.2019.83-88","DOIUrl":null,"url":null,"abstract":"Computer Assisted Testing (CAT) system in Indonesia has been commonly used but only to displaying random exam questions and unable to detect the maximum performance of the test participants. This research proposes a simple way with a good level of accuracy in identifying the maximum ability of test participants. By applying the Bayesian probabilistic in the selection of random questions with a weight of difficulties, the system can obtain optimal results from participants compared to sequential questions. The accuracy of the system measured on the choice of questions at the maximum level of the examinee alleged ability by the system, compared to the correct answer from participants gives an average accuracy of 75% compared to 33% sequentially. This technique allows tests to be carried out in a shorter time without repetition, which can affect the fatigue of the test participants in answering questions.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.7.2.2019.83-88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computer Assisted Testing (CAT) system in Indonesia has been commonly used but only to displaying random exam questions and unable to detect the maximum performance of the test participants. This research proposes a simple way with a good level of accuracy in identifying the maximum ability of test participants. By applying the Bayesian probabilistic in the selection of random questions with a weight of difficulties, the system can obtain optimal results from participants compared to sequential questions. The accuracy of the system measured on the choice of questions at the maximum level of the examinee alleged ability by the system, compared to the correct answer from participants gives an average accuracy of 75% compared to 33% sequentially. This technique allows tests to be carried out in a shorter time without repetition, which can affect the fatigue of the test participants in answering questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于问答模式的选择性加权贝叶斯预测自适应测试测量学生能力水平
计算机辅助考试(CAT)系统在印度尼西亚被广泛使用,但只是随机显示考试问题,无法检测考试参与者的最大表现。本研究提出了一种简单、准确的方法来识别测试参与者的最大能力。该系统将贝叶斯概率应用于具有难度权重的随机问题的选择中,使参与者获得比顺序问题更优的结果。系统根据考生能力的最高水平来选择问题,与参与者的正确答案相比,系统的准确率平均为75%,而顺序的准确率为33%。这种技术允许在较短的时间内进行测试而不重复,这可能会影响测试参与者在回答问题时的疲劳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1