{"title":"A composite cement of high magnesium sulphate resistance","authors":"A. Allahverdi, M. Akhondi, M. Mahinroosta","doi":"10.3989/MC.2018.11316","DOIUrl":null,"url":null,"abstract":"This study investigates the magnesium sulphate resistance of chemically activated phosphorus slag-based composite cement (CAPSCC). Enough mortar specimens were prepared from phosphorus slag (80 wt.%), type II Portland cement (14 wt.%), and compound chemical activator (6 wt.%) and were exposed to 5% magnesium sulphate solution after being cured. Mortar specimens of both type II and V Portland cements (PC2 and PC5) were also prepared and used for comparison purpose. According to the test results, after 12 months of exposure, PC2, PC5 and CAPSCC exhibited 43.5, 35.2 and 25.2% reduction in compressive strength, 0.136, 0.110, and 0.026% expansion in length, and 0.91, 2.2, and 1.78% change in weight, respectively. Complementary studies by X-ray diffractometry and scanning electron microscopy revealed that CAPSCC has a very low potential for the formation of sulphate attack products, especially ettringite. The results confirm a high magnesium sulphate resistance for CAPSCC compared to PC2 and PC5.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3989/MC.2018.11316","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
This study investigates the magnesium sulphate resistance of chemically activated phosphorus slag-based composite cement (CAPSCC). Enough mortar specimens were prepared from phosphorus slag (80 wt.%), type II Portland cement (14 wt.%), and compound chemical activator (6 wt.%) and were exposed to 5% magnesium sulphate solution after being cured. Mortar specimens of both type II and V Portland cements (PC2 and PC5) were also prepared and used for comparison purpose. According to the test results, after 12 months of exposure, PC2, PC5 and CAPSCC exhibited 43.5, 35.2 and 25.2% reduction in compressive strength, 0.136, 0.110, and 0.026% expansion in length, and 0.91, 2.2, and 1.78% change in weight, respectively. Complementary studies by X-ray diffractometry and scanning electron microscopy revealed that CAPSCC has a very low potential for the formation of sulphate attack products, especially ettringite. The results confirm a high magnesium sulphate resistance for CAPSCC compared to PC2 and PC5.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.