Research on the Buckling Load of Clamped Spherical Caps Under External Pressure: Analyzed by the Fourier Series Model with Initial Geometric Imperfections
Sanlong Zheng, Yiqi Zhang, Jiawei Xu, Bingbing Chen, Pengfei Wang, Yang Liu
{"title":"Research on the Buckling Load of Clamped Spherical Caps Under External Pressure: Analyzed by the Fourier Series Model with Initial Geometric Imperfections","authors":"Sanlong Zheng, Yiqi Zhang, Jiawei Xu, Bingbing Chen, Pengfei Wang, Yang Liu","doi":"10.1115/1.4056509","DOIUrl":null,"url":null,"abstract":"\n The knockdown factor (KDF), which characterizes the difference between the actual buckling pressure and the classical theoretical pressure of shallow spherical shells under external pressure. By scanning six shallow spherical shells, the geometric characteristics of the shells were analyzed, and a geometric model was established based on the Fourier series. 720 sets of shallow spherical shells under external pressure were simulated using the proposed Fourier series model and simulation method. The influence of the yield strength, geometrical parameter λ, dimensionless parameters radius-thickness ratio R/t, and the imperfection-thickness ratio e/t on KDF were studied, and the highly discrete characteristics of KDF were reproduced. The results showed that the proposed method has a better predictive effect on KDF, which is significantly improved over the "Eigemode imperfections" method. KDF is not only related to λ and e/t, but is also affected by the yield strength and R/t. The lower envelopes of KDF were obtained when e/t was is less than 1.0 and 2.0. The NASA SP-8032 curve corresponds to the lower envelope of KDF when e/t is less than 8.0, and the curve is below the lower envelope of KDF when e/t is less than 1.0 and 2.0. As stipulated in the pressure vessel standard, the KDF obtained by NASA SP-8032 will be conservative for design conditions with e/t less than 1.0 or 2.0, and appropriate adjustment should be considered.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056509","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The knockdown factor (KDF), which characterizes the difference between the actual buckling pressure and the classical theoretical pressure of shallow spherical shells under external pressure. By scanning six shallow spherical shells, the geometric characteristics of the shells were analyzed, and a geometric model was established based on the Fourier series. 720 sets of shallow spherical shells under external pressure were simulated using the proposed Fourier series model and simulation method. The influence of the yield strength, geometrical parameter λ, dimensionless parameters radius-thickness ratio R/t, and the imperfection-thickness ratio e/t on KDF were studied, and the highly discrete characteristics of KDF were reproduced. The results showed that the proposed method has a better predictive effect on KDF, which is significantly improved over the "Eigemode imperfections" method. KDF is not only related to λ and e/t, but is also affected by the yield strength and R/t. The lower envelopes of KDF were obtained when e/t was is less than 1.0 and 2.0. The NASA SP-8032 curve corresponds to the lower envelope of KDF when e/t is less than 8.0, and the curve is below the lower envelope of KDF when e/t is less than 1.0 and 2.0. As stipulated in the pressure vessel standard, the KDF obtained by NASA SP-8032 will be conservative for design conditions with e/t less than 1.0 or 2.0, and appropriate adjustment should be considered.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.