M. Khodayar, Masoud Mahdavinia, M. Baradaran, A. Jalali
{"title":"Explanation of Structure and Function of kv1.3 Potent Blocker From Mesobuthus eupeus Venom Gland: A New Promise in Drug Development","authors":"M. Khodayar, Masoud Mahdavinia, M. Baradaran, A. Jalali","doi":"10.5812/jjnpp.120271","DOIUrl":null,"url":null,"abstract":"Background: Scorpions and other venomous animals are sought with great concern because venom is a source of novel peptides with exciting features. Some toxins of scorpion venom are effectors of potassium channels. Previous studies strongly support the importance of potassium channel toxins for use as pharmacological tools or potential drugs. Objectives: Here, a three-dimensional (3-D) structure and function of a potent acidic blocker of the human voltage-gated potassium ion channel, Kv1.3, previously identified in the scorpion Mesobuthus eupeus venom gland, were interpreted. Methods: The 3-D structure of meuK2-2 was generated using homology modeling. The interaction of meuK2-2 with the Kv1.3 channel was evaluated using a computational protocol employing peptide-protein docking experiments, pose clustering, and 100 ns molecular dynamic simulations to make the 3-D models of the meuK2-2/Kv1.3 complex trustworthy. Results: A CSα/β (cysteine-stabilized α-helical and β-sheet) fold was found for the 3-D structure of meuK2-2. In a different mechanism from what was identified so far, meuK2-2 binds to both turret and pore loop of Kv1.3 through two key residues (Ala28 and Ser11) and H-bonds. The binding of meuK2-2 induces some conformational changes to Kv1.3. Eventually, the side chain of a positively charged amino acid (His9) occupies the channel's pore. All together blocks the ion permeation pathway. Conclusions: MeuK2-2 could block Kv1.3 by a new mechanism. So, it could be a unique target for further investigations to develop a pharmacological tool and potential drug.","PeriodicalId":17745,"journal":{"name":"Jundishapur Journal of Natural Pharmaceutical Products","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Natural Pharmaceutical Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/jjnpp.120271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Scorpions and other venomous animals are sought with great concern because venom is a source of novel peptides with exciting features. Some toxins of scorpion venom are effectors of potassium channels. Previous studies strongly support the importance of potassium channel toxins for use as pharmacological tools or potential drugs. Objectives: Here, a three-dimensional (3-D) structure and function of a potent acidic blocker of the human voltage-gated potassium ion channel, Kv1.3, previously identified in the scorpion Mesobuthus eupeus venom gland, were interpreted. Methods: The 3-D structure of meuK2-2 was generated using homology modeling. The interaction of meuK2-2 with the Kv1.3 channel was evaluated using a computational protocol employing peptide-protein docking experiments, pose clustering, and 100 ns molecular dynamic simulations to make the 3-D models of the meuK2-2/Kv1.3 complex trustworthy. Results: A CSα/β (cysteine-stabilized α-helical and β-sheet) fold was found for the 3-D structure of meuK2-2. In a different mechanism from what was identified so far, meuK2-2 binds to both turret and pore loop of Kv1.3 through two key residues (Ala28 and Ser11) and H-bonds. The binding of meuK2-2 induces some conformational changes to Kv1.3. Eventually, the side chain of a positively charged amino acid (His9) occupies the channel's pore. All together blocks the ion permeation pathway. Conclusions: MeuK2-2 could block Kv1.3 by a new mechanism. So, it could be a unique target for further investigations to develop a pharmacological tool and potential drug.