Substantial adaptive artificial bee colony algorithm implementation for glioblastoma detection

Shafaf Ibrahim, Khyrina Airin Fariza Abu Samah, Raseeda Hamzah, Nurul Amira Mohd Ali, Raihah Aminuddin
{"title":"Substantial adaptive artificial bee colony algorithm implementation for glioblastoma detection","authors":"Shafaf Ibrahim, Khyrina Airin Fariza Abu Samah, Raseeda Hamzah, Nurul Amira Mohd Ali, Raihah Aminuddin","doi":"10.11591/ijai.v12.i1.pp443-450","DOIUrl":null,"url":null,"abstract":"Glioblastoma multiforme (GBM) is a high-grade brain tumor that is extremely dangerous and aggressive. Due to its rapid development rate, high-grade cancers require early detection and treatment, and early detection may possibly increase the chances of survival. The current practice of GBM detection is performed by a radiologist; due to the enormous number of cases, it is nevertheless tedious, intrusive, and error-prone. Thus, this study attempted a substantial adaptive artificial bee colony (a-ABC) algorithm implementation in providing a non-invasive approach for GBM detection. The basic statistical intensity-based analysis of minimum (minGL), maximum (maxGL), and mean (meanGL) of grey level data was employed to investigate the GBM's feature properties. The a-ABC's performance for adaptive GBM detection identification was evaluated using T1-weighted (T1), T2-weighted (T2), fluid attenuated inversion recovery (FLAIR), and T1-contrast (T1C) which are four different magnetic resonance imaging (MRI) imaging sequences. Hundred and twenty MRI of GBM images were assessed in total, with 30 images per imaging sequence. The overall mean of GBM detection accuracy percentage was 93.67%, implying that the proposed a-ABC algorithm is capable of detecting GBM brain tumors. Other feature extraction strategies, on the other hand, may be added in the future to enhancee the performance of feature extraction. ","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp443-450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Glioblastoma multiforme (GBM) is a high-grade brain tumor that is extremely dangerous and aggressive. Due to its rapid development rate, high-grade cancers require early detection and treatment, and early detection may possibly increase the chances of survival. The current practice of GBM detection is performed by a radiologist; due to the enormous number of cases, it is nevertheless tedious, intrusive, and error-prone. Thus, this study attempted a substantial adaptive artificial bee colony (a-ABC) algorithm implementation in providing a non-invasive approach for GBM detection. The basic statistical intensity-based analysis of minimum (minGL), maximum (maxGL), and mean (meanGL) of grey level data was employed to investigate the GBM's feature properties. The a-ABC's performance for adaptive GBM detection identification was evaluated using T1-weighted (T1), T2-weighted (T2), fluid attenuated inversion recovery (FLAIR), and T1-contrast (T1C) which are four different magnetic resonance imaging (MRI) imaging sequences. Hundred and twenty MRI of GBM images were assessed in total, with 30 images per imaging sequence. The overall mean of GBM detection accuracy percentage was 93.67%, implying that the proposed a-ABC algorithm is capable of detecting GBM brain tumors. Other feature extraction strategies, on the other hand, may be added in the future to enhancee the performance of feature extraction. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶质母细胞瘤检测的实体自适应人工蜂群算法实现
多形性胶质母细胞瘤(GBM)是一种高度恶性脑肿瘤,具有极高的危险性和侵袭性。由于其发展速度快,高级别癌症需要早期发现和治疗,早期发现可能会增加生存机会。目前GBM检测的做法是由放射科医生执行;尽管如此,由于案例数量巨大,它仍然是乏味的、侵入性的和容易出错的。因此,本研究尝试了一种实质性的自适应人工蜂群(a- abc)算法实现,为GBM检测提供了一种非侵入性方法。采用基于基本统计强度的灰度数据最小值(minGL)、最大值(maxGL)和均值(meanGL)分析方法研究GBM的特征属性。采用T1加权(T1)、T2加权(T2)、流体衰减反演恢复(FLAIR)和T1对比(T1C)四种不同的磁共振成像(MRI)成像序列,评价a-ABC自适应GBM检测识别的性能。共评估120张GBM MRI图像,每个成像序列30张。GBM检测准确率的总体平均值为93.67%,表明本文提出的a-ABC算法能够检测出GBM脑肿瘤。另一方面,将来可能会添加其他特征提取策略来增强特征提取的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1