Nonreciprocal optical properties of magneto-optical film doped with metal particles based on the effective medium theory

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanophotonics Pub Date : 2023-01-01 DOI:10.1117/1.JNP.17.016001
Jianfei Han, Kaifeng Wei, Han Wang
{"title":"Nonreciprocal optical properties of magneto-optical film doped with metal particles based on the effective medium theory","authors":"Jianfei Han, Kaifeng Wei, Han Wang","doi":"10.1117/1.JNP.17.016001","DOIUrl":null,"url":null,"abstract":"Abstract. In search of next-generation optical information functional materials, magneto-optical microstructures have attracted great attention since they can break Kirchhoff’s law and produce higher photoelectric conversion efficiency. Theoretical studies using finite-difference time-domain and transfer matrix methods have been performed to investigate the optical properties of magneto-optical microstructures. However, these methods are computationally intensive and require periodic conditions, which may not be satisfied with most fabricated samples. The equivalent medium algorithm is improved to make it suitable for the equivalent of magneto-optical materials. Based on the improved equivalent medium theory (EMT), a magneto-optical InSb film structure doped with Au particles (D-InSb) is designed. The effective dielectric functions of the D-InSb layer for transfer matrix waves are obtained from the Bruggeman approximation. Thin-film optics formulas incorporating the anisotropic wave propagation in uniaxial media are employed to calculate the nonreciprocal absorptance of the D-InSb film. The effect of geometric parameters, such as filling ratio and number of layers, is investigated. In addition to modeling the directional radiative properties at various angles of incidence, the hemispherical properties are also calculated to understand the light absorption. The results of our study can provide methods and ideas for the design of solar cells, infrared absorbers, and optical isolators.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"016001 - 016001"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. In search of next-generation optical information functional materials, magneto-optical microstructures have attracted great attention since they can break Kirchhoff’s law and produce higher photoelectric conversion efficiency. Theoretical studies using finite-difference time-domain and transfer matrix methods have been performed to investigate the optical properties of magneto-optical microstructures. However, these methods are computationally intensive and require periodic conditions, which may not be satisfied with most fabricated samples. The equivalent medium algorithm is improved to make it suitable for the equivalent of magneto-optical materials. Based on the improved equivalent medium theory (EMT), a magneto-optical InSb film structure doped with Au particles (D-InSb) is designed. The effective dielectric functions of the D-InSb layer for transfer matrix waves are obtained from the Bruggeman approximation. Thin-film optics formulas incorporating the anisotropic wave propagation in uniaxial media are employed to calculate the nonreciprocal absorptance of the D-InSb film. The effect of geometric parameters, such as filling ratio and number of layers, is investigated. In addition to modeling the directional radiative properties at various angles of incidence, the hemispherical properties are also calculated to understand the light absorption. The results of our study can provide methods and ideas for the design of solar cells, infrared absorbers, and optical isolators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有效介质理论的金属颗粒掺杂磁光薄膜的非互易光学特性
摘要在寻找下一代光学信息功能材料的过程中,磁光微结构由于能够打破基尔霍夫定律并产生更高的光电转换效率而引起了人们的极大关注。利用时域有限差分和传递矩阵方法对磁光微结构的光学性质进行了理论研究。然而,这些方法计算密集,并且需要周期性条件,这可能不能满足大多数制造的样品。对等效介质算法进行了改进,使其适用于磁光材料的等效。基于改进的等效介质理论(EMT),设计了一种掺Au颗粒的磁光InSb薄膜结构(D-InSb)。根据Bruggeman近似,得到了D-InSb层对传输矩阵波的有效介电函数。采用包含各向异性波在单轴介质中传播的薄膜光学公式计算了D-InSb薄膜的非互易吸收率。研究了填充率和层数等几何参数的影响。除了对不同入射角下的定向辐射特性进行建模外,还计算了半球形特性以了解光吸收。我们的研究结果可以为太阳能电池、红外吸收剂和光隔离器的设计提供方法和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
期刊最新文献
Optical spin injection and detection in submonolayer InAs/GaAs nanostructures by circularly polarized photoluminescence Analysis of the Purcell effect of plasmonic supercrystal films and nanocavities made by close-packed metallic nanoparticles Fabrication of silver-decorated zinc oxide nanowire sensor in microchannels for surface-enhanced Raman spectroscopy Resilience of circular-polarization-state-sensitive reflection against morphological disorder in chiral structures Tiny hybrid modified organosilane-titanium dioxide nanocomposites with dual photonic behavior: insights for enhanced in-flow signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1